A Active Learning with SVM
نویسندگان
چکیده
With the increasing demand of multimedia information retrieval, such as image and video retrieval from the Web, there is a need to find ways to train a classifier when the training dataset is combined with a small number of labelled data and a large number of unlabeled one. Traditional supervised or unsupervised learning methods are not suited to solving such problems particularly when the problem is associated with data in a high-dimension space. In recent years, many methods have been proposed that can be broadly divided into two groups: semi-supervised and active learning (AL). Support Vector Machine (SVM) has been recognized as an efficient tool to deal with high-dimensionality problems, a number of researchers have proposed algorithms of Active Learning with SVM (ALSVM) since the turn of the Century. Considering their rapid development, we review, in this chapter, the state-of-the-art of ALSVM for solving classification problems.
منابع مشابه
Bootstrapping SVM Active Learning by Incorporating Unlabelled Images for Image Retrieval
The performance of image retrieval with SVM active learning is known to be poor when started with few labelled images only. In this paper, the problem is solved by incorporating the unlabelled images into the bootstrapping of the learning process. In this work, the initial SVM classifier is trained with the few labelled images and the unlabelled images randomly selected from the image database....
متن کاملImproving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images
In content-base image retrieval, relevance feedback (RF) schemes based on support vector machine (SVM) have been widely used to narrow the semantic gap between low-level visual features and high-level human perception. However, the performance of image retrieval with SVM active learning is known to be poor when the training data is insufficient. In this paper, the problem is solved by incorpora...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملIdeas and Applications on Support Vector Machine Active Learning
For most algorithms we studied from our machine learning course CS545 [1], we choose training samples randomly from a large pool of labeled data, which means we know the sample classes in advance while constructing the training data set. While there is another option for selection training data: pool-based active learning, which is first introduced by Lewis and Gale in 1994 [5]. The learner can...
متن کاملAdapting SVM for data sparseness and imbalance: a case study in information extraction
Support Vector Machines (SVM) have been used successfully in many Natural Language Processing (NLP) tasks. The novel contribution of this paper is in investigating two techniques for making SVM more suitable for language learning tasks. Firstly, we propose an SVM with uneven margins (SVMUM) model to deal with the problem of imbalanced training data. Secondly, SVM active learning is employed in ...
متن کاملSupport Kernel Machine-Based Active Learning to Find Labels and a Proper Kernel Simultaneously
SVM-based active learning has been successfully applied when a large number of unlabeled samples are available but getting their labels is costly. However, the kernel used in SVM should be fixed properly before the active learning process. If the pre-selected kernel is inadequate for the target data, the learned SVM has poor performance. So, new active learning methods are required which effect...
متن کامل