A New Self-Dual Embedding Method for Convex Programming

نویسنده

  • Shuzhong Zhang
چکیده

In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for a standard primal-dual path following approach for solving the embedded problem. Moreover, there are two immediate logarithmic barrier functions for the primal and dual cones. We show that these two logarithmic barrier functions are conjugate to each other. The explicit form of the conjugate functions are in fact not required to be known in the algorithm. An advantage of the new approach is that there is no need to assume an initial feasible solution to start with. To guarantee the polynomiality of the path-following procedure, we may apply the self-concordant barrier theory of Nesterov and Nemirovski. For this purpose, as one application, we prove that the barrier functions constructed this way are indeed self-concordant when the original constraint functions are convex and quadratic.

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A Primal-Dual Decomposition Algorithm for Multistage Stochastic Convex Programming

This paper presents a new and high performance solution method for multistage stochastic convex programming. Stochastic programming is a quantitative tool developed in the field of optimization to cope with the problem of decision-making under uncertainty. Among others, stochastic programming has found many applications in finance, such as asset-liability and bond-portfolio management. However,...

متن کامل

On implementation of a self-dual embedding method for convex programming

In this paper, we implement Zhang’s method [22], which transforms a general convex optimization problem with smooth convex constraints into a convex conic optimization problem and then apply the techniques of self-dual embedding and central path following for solving the resulting conic optimization model. A crucial advantage of the approach is that no initial solution is required, and the meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • J. Global Optimization

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2004