Noise and critical phenomena in biochemical signaling cycles at small molecule numbers.
نویسندگان
چکیده
Biochemical reaction networks in living cells usually involve reversible covalent modification of signaling molecules, such as protein phosphorylation. Under conditions of small molecule numbers, as is frequently the case in living cells, mass-action theory fails to describe the dynamics of such systems. Instead, the biochemical reactions must be treated as stochastic processes that intrinsically generate concentration fluctuations of the chemicals. We investigate the stochastic reaction kinetics of covalent modification cycles (CMCs) by analytical modeling and numerically exact Monte Carlo simulation of the temporally fluctuating concentration. Depending on the parameter regime, we find for the probability density of the concentration qualitatively distinct classes of distribution functions including power-law distributions with a fractional and tunable exponent. These findings challenge the traditional view of biochemical control networks as deterministic computational systems and suggest that CMCs in cells can function as versatile and tunable noise generators.
منابع مشابه
Physical limits to biochemical signaling.
Many crucial biological processes operate with surprisingly small numbers of molecules, and there is renewed interest in analyzing the impact of noise associated with these small numbers. Twenty-five years ago, Berg and Purcell showed that bacterial chemotaxis, where a single-celled organism must respond to small changes in concentration of chemicals outside the cell, is limited directly by mol...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملAnalysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes
Introduction: Molecular interactions play an important role in the phenomenon and biological processes. In fact, any cellular biological process ranged from genetic replication to the production of various proteins to the transmission of neurological, hormonal, membrane involves collections of molecular interactions that occur continuously. Interference in each of these processes at every stage...
متن کاملO-8: Critical Role of Hyaluronan System in Pre-Implantation Embryo Development and Establishment of Pregnancy
Background: Hyaluronan (HA) is a structural component of extracellular matrix synthesised by HA synthases HAS1-3, which produce HA of different molecular sizes with distinct biological functions associated with reproductive processes. Hyaluronidase (HYAL) cleaves the HA into biologically active small fragments which are known to regulate cell proliferation through CD44 receptor signaling. HA is...
متن کاملDynamical fluctuations in biochemical reactions and cycles.
We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2009