Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
نویسندگان
چکیده
Inorganic–organic hybrid structures have become innovative alternatives for next-generation dye-sensitized solar cells, because they combine the advantages of both systems. Here, we introduce a layered sandwich-type architecture, the core of which comprises a bicontinuous three-dimensional nanocomposite of mesoporous (mp)-TiO2, with CH3NH3PbI3 perovskite as light harvester, as well as a polymeric hole conductor. This platform creates new opportunities for the development of low-cost, solution-processed, high-efficiency solar cells. The use of a polymeric hole conductor, especially poly-triarylamine, substantially improves the open-circuit voltage Voc and fill factor of the cells. Solar cells based on these inorganic–organic hybrids exhibit a short-circuit current density Jsc of 16.5 mA cm , Voc of 0.997 V and fill factor of 0.727, yielding a power conversion efficiency of 12.0% under standard AM 1.5 conditions.
منابع مشابه
High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.
A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar org...
متن کاملInvestigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells
Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...
متن کاملConjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
UNLABELLED Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stabilit...
متن کاملTitanium dioxide/silicon hole-blocking selective contact to enable double- heterojunction crystalline silicon-based solar cell
Articles you may be interested in High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques High efficiency double heterojunction polymer photovoltaic cells u...
متن کاملRecent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.
Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar sem...
متن کامل