Do high impact exercises produce higher tibial strains than running?
نویسندگان
چکیده
BACKGROUND Bone must have sufficient strength to withstand both instantaneous forces and lower repetitive forces. Repetitive loading, especially when bone strain and/or strain rates are high, can create microdamage and result in stress fracture AIM To measure in vivo strains and strain rates in human tibia during high impact and moderate impact exercises. METHODS Three strain gauged bone staples were mounted percutaneously in a rosette pattern in the mid diaphysis of the medial tibia in six normal subjects, and in vivo tibial strains were measured during running at 17 km/h and drop jumping from heights of 26, 39, and 52 cm. RESULTS Complete data for all three drop jumps were obtained for four of the six subjects. No statistically significant differences were found in compression, tension, or shear strains with increasing drop jump height, but, at the 52 cm height, shear strain rate was reduced by one third (p = 0.03). No relation was found between peak compression strain and calculated drop jump energy, indicating that subjects were able to dissipate part of the potential energy of successively higher drop jumps by increasing the range of motion of their knee and ankle joints and not transmitting the energy to their tibia. No statistically significant differences were found between the principal strains during running and drop jumping from 52 cm, but compression (p = 0.01) and tension (p = 0.004) strain rates were significantly higher during running. CONCLUSIONS High impact exercises, as represented by drop jumping in this experiment, do not cause higher tibial strains and strain rates than running and therefore are unlikely to place an athlete who is accustomed to fast running at higher risk for bone fatigue.
منابع مشابه
In-vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone.
Mechanical loading during physical activity produces strains within bones. It is thought that these forces provide the stimulus for the adaptation of bone. Tibial strains and rates of strain were measured in vivo in six subjects during running, stationary bicycling, leg presses and stepping and were compared with those of walking, an activity which has been found to have only a minimal effect o...
متن کاملAre overground or treadmill runners more likely to sustain tibial stress fracture?
BACKGROUND Repetitive high bone strain and/or strain rates, such as those that occur during running, contribute to stress fractures as well as promoting maintenance of or increase in bone mass. Kinematic differences are known to exist between overground and treadmill running and these may be reflected in different bone strains and strain rates during the two running techniques. AIM To measure...
متن کاملDo Impacts Cause Running Injuries? a Prospective Investigation
During running, the foot collides with the ground approximately 1000 times per mile. These collisions vary significantly by the strike pattern that the runner adopts. A rearfoot strike pattern results in a very distinct vertical impact peak that is missing in a midfoot or forefoot strike landing (Figure 1) [1]. The impact peak of a rearfoot strike is associated with higher rates of loading comp...
متن کاملWhat do we currently know from in vivo bone strain measurements in humans?
Bone strains are the most important factors for osteogenic adaptive responses. During the past decades, scientists have been trying to describe the relationship between bone strain and bone osteogenic responses quantitatively. However, only a few studies have examined bone strains under physiological condition in humans, owing to technical difficulty and ethical restrictions. The present paper ...
متن کاملFluoroscopic analysis of anterior tibial translation during eccentric and concentric phase of knee rehabilitation exercises in men with anterior cruciate ligament injury
Background: The amount of anterior tibial translation during rehabilitation exercises is a key factor in organizing exercise regimen after anterior cruciate ligament injury. Excessive anterior tibial translation could increase the magnitude of tension imposed on injured and reconstructed anterior cruciate ligament knees. Forward lunge and open-kinetic knee extension exercises are commonly used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of sports medicine
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2000