Acceleration of Runge-kutta Integration Schemes
نویسندگان
چکیده
A simple accelerated third-order Runge-Kutta-type, fixed time step, integration scheme that uses just two function evaluations per step is developed. Because of the lower number of function evaluations, the scheme proposed herein has a lower computational cost than the standard third-order Runge-Kutta scheme while maintaining the same order of local accuracy. Numerical examples illustrating the computational efficiency and accuracy are presented and the actual speedup when the accelerated algorithm is implemented is also provided.
منابع مشابه
Bandlimited implicit Runge–Kutta integration for Astrodynamics
We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit ...
متن کاملSegregated Runge-Kutta methods for the incompressible Navier-Stokes equations
In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...
متن کاملSemi - Implicit Runge - Kutta Schemes Forthe Navier - Stokes Equations
The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the ow over a at plate show that the number of iterations for the...
متن کاملHigh Order Runge { Kutta Methods on Manifolds
This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.
متن کاملAn overview of high-order finite difference schemes for computational aeroacoustics
One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the timeand space-derivatives, should exhibit a low dispersion and dissipation error. This p...
متن کامل