Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan.
نویسندگان
چکیده
Triclosan is a potent inhibitor of FabI (enoyl-ACP reductase, where ACP stands for acyl carrier protein), which catalyses the last step in a sequence of four reactions that is repeated many times with each elongation step in the type II fatty acid biosynthesis pathway. The malarial parasite Plasmodium falciparum also harbours the genes and is capable of synthesizing fatty acids by utilizing the enzymes of type II FAS (fatty acid synthase). The basic differences in the enzymes of type I FAS, present in humans, and type II FAS, present in Plasmodium, make the enzymes of this pathway a good target for antimalarials. The steady-state kinetics revealed time-dependent inhibition of FabI by triclosan, demonstrating that triclosan is a slow-tight-binding inhibitor of FabI. The inhibition followed a rapid equilibrium step to form a reversible enzyme-inhibitor complex (EI) that isomerizes to a second enzyme-inhibitor complex (EI*), which dissociates at a very slow rate. The rate constants for the isomerization of EI to EI* and the dissociation of EI* were 5.49x10(-2) and 1x10(-4) s(-1) respectively. The K(i) value for the formation of the EI complex was 53 nM and the overall inhibition constant K(i)* was 96 pM. The results match well with the rate constants derived independently from fluorescence analysis of the interaction of FabI and triclosan, as well as those obtained by surface plasmon resonance studies [Kapoor, Mukhi, N. Surolia, Sugunda and A. Surolia (2004) Biochem. J. 381, 725-733].
منابع مشابه
Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents
Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD(+) and triclosan and of T. gondii ENR in an ap...
متن کاملDevelopment of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.
Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease if the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase) has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, we have developed novel derivatives of 1,2,4-triazole-5-...
متن کاملDevelopment of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.
Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease if the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase) has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, we have developed novel derivatives of 1,2,4-triazole-5-...
متن کاملKinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis.
Type II fatty acid biosynthesis represents an attractive target for the discovery of new antimalarial drugs. Previous studies have identified malarial ENR (enoyl acyl-carrier-protein reductase, or FabI) as the target for the antiseptic triclosan. In the present paper, we report the biochemical properties and 1.5 A (1 A=0.1 nm) crystal structure of OAR (3-oxoacyl acyl-carrier-protein reductase, ...
متن کاملEnzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex
Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 381 Pt 3 شماره
صفحات -
تاریخ انتشار 2004