Thermal tuning of Kerr frequency combs in silicon nitride microring resonators.
نویسندگان
چکیده
Microresonator based Kerr frequency comb generation has many attractive features, including ultrabroad spectra, chip-level integration, and low power consumption. Achieving precise tuning control over the comb frequencies will be important for a number of practical applications, but has been little explored for microresonator combs. In this paper, we characterize the thermal tuning of a coherent Kerr frequency comb generated from an on-chip silicon nitride microring. When the microring temperature is changed by ~70 °C with an integrated microheater, the line spacing and center frequency of the comb are tuned respectively by -253 MHz (-3.57 MHz/°C) and by -175 GHz (-2.63 GHz/°C); the latter constitutes 75% of the comb line spacing. From these results we obtain a shift of 25 GHz (362.07 MHz/°C) in the comb carrier-envelope offset frequency. Numerical simulations are performed by taking into account the thermo-optic effects in the waveguide core and cladding. The temperature variation of the comb line spacing predicted from simulations is close to that observed in experiments. The time-dependent thermal response of the microheater based tuning scheme is characterized; time constants of 30.9 μs and 0.71 ms are observed.
منابع مشابه
Optical frequency comb generation from aluminum nitride microring resonator.
Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, fre...
متن کاملMolecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators.
The wavelength selective linear absorption in communication C-band is investigated in CMOS-processed PECVD silicon nitride rings. In the overcoupled region, the linear absorption loss lowers the on-resonance transmission of a ring resonator and increases its overall quality factor. Both the linear absorption and ring quality factor are maximized near 1520 nm. The direct heating by phonon absorp...
متن کاملThermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides.
We introduce and present experimental evaluations of loss and nonlinear optical response in a waveguide and an optical resonator, both implemented with a silicon nitride/ silicon dioxide material platform prepared by plasma-enhanced chemical vapor deposition with dual frequency reactors that significantly reduce the stress and the consequent loss of the devices. We measure a relatively small lo...
متن کاملBandwidth tunable filter based on silicon microring-MZI structure
A novel bandwidth tunable bandpass filter based on a silicon microring-MZI structure is proposed and demonstrated. By thermally tuning the resonance offset between the two microring resonators, and adding the two drop transmissions together, the bandwidth of the microring-MZI filter can be easily linearly tuned with low in-band ripples. Key words—bandwidth tunable; thermal tunable; optical filt...
متن کاملChip-based frequency combs with sub-100 GHz repetition rates.
By fabricating high-Q silicon-nitride spiral resonators, we demonstrate frequency combs spanning over 200 nm with free spectral ranges (FSRs) of 80, 40, and 20 GHz using cascaded four-wave mixing. We characterize the RF beat note for the 20 GHz FSR comb, and the measured linewidth of 3.6 MHz is consistent with thermal fluctuations in the resonator due to amplitude noise of the pump source. Thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2016