Effects of peripheral-type benzodiazepine receptor antisense knockout on MA-10 Leydig cell proliferation and steroidogenesis.

نویسندگان

  • E Kelly-Hershkovitz
  • R Weizman
  • I Spanier
  • S Leschiner
  • M Lahav
  • G Weisinger
  • M Gavish
چکیده

The peripheral-type benzodiazepine receptor (PBR) is not only widely expressed throughout the body, but it is also genetically conserved from bacteria to humans. Many functions have been attributed to it, but its primary role remains a puzzle. In the current study, we stably transfected cultures of MA-10 Leydig cells with either control or 18-kDa PBR antisense knockout plasmids. The antisense knockout vector was driven by the human enkephalin promoter, which contains two cAMP response elements, such that cAMP treatment of transfected cells could superinduce 18-kDa PBR antisense RNA transcription and, hence, down-regulate endogenous 18-kDa PBR mRNA levels. Control and knockout MA-10 cell lines were then compared at the level of receptor binding, thymidine incorporation, and steroid biosynthesis. Eighteen-kilodalton PBR knockout reduced the maximal binding capacity of tritium-labeled PBR ligands, and the affinity of receptors to the ligands remained unaltered. Additionally, 24-h accumulation of progesterone was lower in the knockout cells. Exposure of the two cell types to 8-bromo-cAMP resulted in a robust increase in steroid production. However, a complex pattern of steroid accumulation was observed, in which further progestin metabolism was indicated. The later decline in accumulated progesterone as well as the synthesis of androstenedione were different in the two cell types. At the level of cell proliferation, reduction of 18-kDa PBR mRNA showed no effect. Thus, we conclude that the 18-kDa PBR may have a more important role in steroidogenesis than in proliferation in this Leydig cell line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line.

The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig tumor cells. The present study was designed to characterize the role of DBI and PBR in the R2C ra...

متن کامل

Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor α.

In this study, we hypothesized that many of the reported effects of phthalate esters and other peroxisome proliferators (PPs) in the testis are mediated by members of the PPactivated receptor (PPAR) family of transcription factors through alterations in proteins involved in steroidogenesis. Exposure of Leydig cells to PPs prevented cholesterol transport into the mitochondria after hormonal stim...

متن کامل

Identification of a peptide antagonist to the peripheral-type benzodiazepine receptor that inhibits hormone-stimulated leydig cell steroid formation.

Peripheral-type benzodiazepine receptor (PBR) is an 18-kDa high-affinity cholesterol and drug ligand-binding protein involved in various cell functions, including cholesterol transport and steroid biosynthesis. To aid our investigation of the biological function of PBR, we have set out to identify functional antagonists. By screening phage display libraries, we have identified peptides that dis...

متن کامل

The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis.

Testicular mitochondria were previously shown to contain an abundance of peripheral-type benzodiazepine recognition site(s)/receptor(s) (PBR). We have previously purified, cloned, and expressed an Mr 18,000 PBR protein (Antkiewicz-Michaluk, Mukhin, A. G., Guidotti, A., and Krueger, K. E. (1988) J. Biol. Chem. 263, 17317-17321; (Sprengel, R., Werner, P., Seeburg, P. H., Mukhin, A. G., Santi, M. ...

متن کامل

Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.

Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Ley...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 10  شماره 

صفحات  -

تاریخ انتشار 1998