Estimation and uncertainty of reversible Markov models.
نویسندگان
چکیده
Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.
منابع مشابه
Aerosol model selection and uncertainty modelling by adaptive MCMC technique
We present a new technique for model selection problem in atmospheric remote sensing. The technique is based on Monte Carlo sampling and it allows model selection, calculation of model posterior probabilities and model averaging in Bayesian way. The algorithm developed here is called Adaptive Automatic Reversible Jump Markov chain Monte Carlo method (AARJ). It uses Markov chain Monte Carlo (MCM...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملAbsorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Rework and Scrapping
In this paper, absorbing Markov chain models are developed to determine the optimum process mean levels for both a single-stage and a serial two-stage production system in which items are inspected for conformity with their specification limits. When the value of the quality characteristic of an item falls below a lower limit, the item is scrapped. If it falls above an upper limit, the item is ...
متن کاملUsefulness of the Reversible Jump Markov Chain Monte Carlo Model in Regional Flood Frequency Analysis
Regional flood frequency analysis is a convenient way to reduce estimation uncertainty when few data are available at the gauging site. In this work, a model that allows a non null probability to a regional fixed shape parameter is presented. This methodology is integrated within a Bayesian framework and uses reversible jump techniques. The performance on stochastic data of this new estimator i...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 17 شماره
صفحات -
تاریخ انتشار 2015