Ela Nonnegativity of Schur Complements of Nonnegative
نویسنده
چکیده
Let A be a nonnegative idempotent matrix. It is shown that the Schur complement of a submatrix, using the Moore-Penrose inverse, is a nonnegative idempotent matrix if the submatrix has a positive diagonal. Similar results for the Schur complement of any submatrix of A are no longer true in general.
منابع مشابه
Nonnegativity of Schur complements of nonnegative idempotent matrices
Let A be a nonnegative idempotent matrix. It is shown that the Schur complement of a submatrix, using the Moore-Penrose inverse, is a nonnegative idempotent matrix if the submatrix has a positive diagonal. Similar results for the Schur complement of any submatrix of A are no longer true in general.
متن کاملEla Generalized Schur Complements of Matrices and Compound Matrices
In this paper, we obtain some formulas for compound matrices of generalized Schur complements of matrices. Further, we give some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices, and obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.
متن کاملEla M ∨ - Matrices : a Generalization of M - Matrices Based on Eventually Nonnegative Matrices
An M ∨-matrix has the form A = sI − B, where s ≥ ρ(B) ≥ 0 and B is eventually nonnegative; i.e., B k is entrywise nonnegative for all sufficiently large integers k. A theory of M ∨-matrices is developed here that parallels the theory of M-matrices, in particular as it regards exponential nonnegativity, spectral properties, semipositivity, monotonicity, inverse nonnegativity and diagonal dominance.
متن کاملEla Schur Complements and Banachiewicz - Schur Forms
Through the matrix rank method, this paper gives necessary and sufficient conditions for a partitioned matrix to have generalized inverses with Banachiewicz-Schur forms. In addition, this paper investigates the idempotency of generalized Schur complements in a partitioned idempotent matrix.
متن کاملA Combinatorial Proof That Schubert vs. Schur Coefficients Are Nonnegative
We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf’s theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Gra...
متن کامل