An increase in glucosylceramide synthase induces Bcl-xL-mediated cell survival in vinorelbine-resistant lung adenocarcinoma cells
نویسندگان
چکیده
Reversing drug resistance with concurrent treatment confers anticancer benefits. In this study, we investigated the potential mechanism of glucosylceramide synthase (GCS)-mediated vinca alkaloid vinorelbine (VNR) resistance in human lung adenocarcinoma cells. Compared with PC14PE6/AS2 (AS2) and CL1-0 cells, apoptotic analysis showed that both A549 and CL1-5 cells were VNR-resistant, while these cells highly expressed GCS at the protein level. VNR treatment significantly converts ceramide to glucosylceramide in VNR-resistant cells; however, pharmacologically inhibiting GCS with (±)-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride (PDMP) induced ceramide accumulation, accompanied by a decrease in glucosylceramide. Under concurrent treatment with VNR and PDMP, an increase in cell apoptosis could be identified; furthermore, genetically silencing GCS confirmed these effects. In VNR-resistant cells, Bcl-xL expression was aberrantly increased, while pharmacologically inhibiting Bcl-xL with ABT-737 sensitized cells to VNR-induced apoptosis. Conversely, enforced expression of Bcl-xL strengthened the survival response of the VNR-susceptible cells AS2 and CL1-0. Without changes in mRNA expression, Bcl-xL was overexpressed independent of β-catenin-mediated transcriptional regulation in VNR-resistant cells. Simultaneous GCS inhibition and VNR treatment caused a decrease in Bcl-xL expression. According to these findings, an increase in GCS caused Bcl-xL augmentation, facilitating VNR resistance in lung adenocarcinoma cells.
منابع مشابه
Bcl-xL Silencing Induces Alterations in hsa-miR-608 Expression and Subsequent Cell Death in A549 and SK-LU1 Human Lung Adenocarcinoma Cells
Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to de...
متن کاملActivation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors.
The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis....
متن کاملSynergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung.
Adenocarcinomas of the lung commonly show an increase in the activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, yet many are resistant to apoptosis induced by the inhibition of PI3K. We hypothesized that Bcl-xL would have a synergistic effect on the apoptotic response induced by inhibition of the PI3K/Akt pathway in lung adenocarcinoma. To test this, we examined the effect ...
متن کاملMET-independent lung cancer cells evading EGFR kinase inhibitors are therapeutically susceptible to BH3 mimetic agents.
Targeted therapies for cancer are inherently limited by the inevitable recurrence of resistant disease after initial responses. To define early molecular changes within residual tumor cells that persist after treatment, we analyzed drug-sensitive lung adenocarcinoma cell lines exposed to reversible or irreversible epidermal growth factor receptor (EGFR) inhibitors, alone or in combination with ...
متن کاملMultidrug resistance-associated protein 3 and Bcl-2 contribute to multidrug resistance by vinorelbine in lung adenocarcinoma.
Although cancer cells initially respond to vinorelbine (NVB), the acquisition of resistance to the treatment is the main cause of chemotherapeutic failure in lung cancer. The intrinsic mechanism of drug resistance induced by NVB in lung cancer is not clear and tumor cell models to study NVB resistance have not been widely studied. We previously es...
متن کامل