Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury.

نویسندگان

  • K Ulrich
  • M Stern
  • M E Goddard
  • J Williams
  • J Zhu
  • A Dewar
  • H A Painter
  • P K Jeffery
  • D R Gill
  • S C Hyde
  • D M Geddes
  • M Takata
  • E W F W Alton
چکیده

Alveolar type II (ATII) cell proliferation and differentiation are important mechanisms in repair following injury to the alveolar epithelium. KGF is a potent ATII cell mitogen, which has been demonstrated to be protective in a number of animal models of lung injury. We have assessed the effect of recombinant human KGF (rhKGF) and liposome-mediated KGF gene delivery in vivo and evaluated the potential of KGF as a therapy for acute lung injury in mice. rhKGF was administered intratracheally in male BALB/c mice to assess dose response and time course of proliferation. SP-B immunohistochemistry demonstrated significant increases in ATII cell numbers at all rhKGF doses compared with control animals and peaked 2 days following administration of 10 mg/kg rhKGF. Protein therapy in general is very expensive, and gene therapy has been suggested as a cheaper alternative for many protein replacement therapies. We evaluated the effect of topical and systemic liposome-mediated KGF-gene delivery on ATII cell proliferation. SP-B immunohistochemistry showed only modest increases in ATII cell numbers following gene delivery, and these approaches were therefore not believed to be capable of reaching therapeutic levels. The effect of rhKGF was evaluated in a murine model of OA-induced lung injury. This model was found to be associated with significant alveolar damage leading to severe impairment of gas exchange and lung compliance. Pretreatment with rhKGF 2 days before intravenous OA challenge resulted in significant improvements in PO2, PCO2, and lung compliance. This study suggests the feasibility of KGF as a therapy for acute lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term simvastatin attenuates lung injury and oxidative stress in murine acute lung injury models induced by oleic Acid and endotoxin.

BACKGROUND 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors have several pleiotropic effects, including anti-inflammatory properties, and are reported to improve endothelial functions. Pathophysiologically, acute lung injury (ALI) is caused by a severe inflammatory response and endothelial dysfunction. OBJECTIVE To investigate the effects of simvastatin (an HMG-CoA reduct...

متن کامل

p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress

Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...

متن کامل

Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway

Objective(s): Aspiration is a common cause of acute lung injury (ALI), which lacks an effective treatment. Inflammation and oxidative stress play key roles in ALI development. Silymarin is an active extract of Silybum marianum plant seeds (milk thistle). Silymarin has potent anti-inflammatory and antioxidant effects; however its role in aspiration induced ALI has not b...

متن کامل

Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced ...

متن کامل

Preventive effect of phosphoenolpyruvate on hypoxemia induced by oleic acid in Guinea pigs.

Oleic acid-induced hypoxemia is an animal model of acute respiratory distress syndrome (ARDS). Increased capillary permeability is a cause of hypoxemia in lung injury. Endothelial cells form a major capillary barrier, and disruption of the barrier appears to involve a decreased level of ATP in the cells. Phosphoenolpyruvate (PEP) is an endogenous substance that is one of the ATP precursors and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 288 6  شماره 

صفحات  -

تاریخ انتشار 2005