eriodic forcing of scroll rings and control of Winfree turbulence n excitable media
نویسندگان
چکیده
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves. © 2006 American Institute of Physics. DOI: 10.1063/1.2203589
منابع مشابه
Expanding scroll rings and negative tension turbulence in a model of excitable media.
Scroll waves in excitable media, described by the Barkley model, are studied. In the parameter region of weak excitability, negative tension of wave filaments is found. It leads to expansion of scroll rings and instability of wave filaments. A circular filament tends to stretch, bend, loop, and produce an expanding tangle that fills up the volume. The filament does not undergo fragmentation bef...
متن کاملSuppression of Winfree turbulence under weak spatiotemporal perturbation.
Winfree turbulence is a chaotic wave pattern developing through negative-tension instability of scroll wave filaments in three-dimensional weak excitable media. Here, we investigate the response of Winfree turbulence to a spatiotemporal forcing in the form of a traveling-wave modulation of the medium excitability. It is shown that turbulent waves can be suppressed much more rapidly by this meth...
متن کاملNegative-tension instability of scroll waves and winfree turbulence in the oregonator model.
Excitable media support self-organized scroll waves which can be unstable and give rise to three-dimensional wave chaos. Winfree turbulence of scroll waves results from the negative-tension instability of scroll waves; it plays an important role in the cardiac tissue where it may lead to ventricular fibrillation. By numerical simulations of the Oregonator model, we show that this instability an...
متن کاملSuppress Winfree turbulence by local forcing excitable systems.
The occurrence of Winfree turbulence is currently regarded as one of the principal mechanisms underlying cardiac fibrillation. We develop a local stimulation method that suppresses Winfree turbulence in three-dimensional excitable media. We find that Winfree turbulence can be effectively suppressed by locally injecting periodic signals to only a very small subset (around some surface region) of...
متن کاملThree-dimensional spiral waves in an excitable reaction system: initiation and dynamics of scroll rings and scroll ring pairs.
We report experimental results on spiral and scroll waves in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction. The propagating concentration waves are detected by two-dimensional photometry and optical tomography. Wave pulses can disappear in front-to-front and front-to-back collisions. This anomaly causes the nucleation of vortices from collisions of three nonrotating waves. In three-dim...
متن کامل