Ablation of Adenosine Monophosphate-Activated Protein Kinase α1 in Vascular Smooth Muscle Cells Promotes Diet-Induced Atherosclerotic Calcification In Vivo.
نویسندگان
چکیده
RATIONALE Atherosclerotic calcification is highly linked with plaque rapture. How calcification is regulated is poorly characterized. OBJECTIVE We sought to determine the contributions of AMP-activated protein kinase (AMPK) in atherosclerotic calcification. METHODS AND RESULTS Aortic calcification was evaluated in aortic roots and brachiocephalic arteries of atherosclerotic prone ApoE(-/-) mice or in mice with dual deficiencies of ApoE and AMPKα isoforms in whole body (ApoE(-/-)/AMPKα1(-/-) and ApoE(-/-)/AMPKα2(-/-)) or vascular smooth muscle cell (VSMC)-specific or macrophage-specific knockout of AMPKα1 fed with Western diet for 24 weeks. Genetic deficiency of AMPKα1 but not of AMPKα2 promoted atherosclerotic calcification and the expression of Runx2 (Runt-related transcription factor). Conversely, chronic administration of metformin, which activated AMPK, markedly reduced atherosclerotic calcification and Runx2 expression in ApoE(-/-) mice but had less effects in ApoE(-/-)/AMPKα1(-/-) mice. Furthermore, VSMC-specific but not macrophage-specific ablation of AMPKα1 promoted aortic calcification in vivo. Ablation of AMPKα1 in VSMC prevented Runx2 from proteasome degradation in parallel with aberrant osteoblastic differentiation of VSMC, whereas AMPK activation promoted Runx2 post-translational modification by small ubiquitin-like modifier (SUMO, SUMOylation), which is associated with its instability. Mechanically, we found that AMPKα1 directly phosphorylated protein inhibitor of activated STAT-1 (PIAS1), the SUMO E3-ligase of Runx2, at serine 510, to promote its SUMO E3-ligase activity. Finally, mutation of protein inhibitor of activated STAT-1 at serine 510 suppressed metformin-induced Runx2 SUMOylation and subsequently prevented metformin's effect on reducing oxidized low-density lipoprotein-triggered Runx2 expression in VSMC. CONCLUSIONS AMPKα1 phosphorylated protein inhibitor of activated STAT-1 to promote Runx2 SUMOylation and subsequently lead to its instability. AMPKα1 deficiency in VSMC increased Runx2 expression and promoted atherosclerotic calcification in vivo.
منابع مشابه
بررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلولهای عضلهی صاف دیوارهی رگها
Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...
متن کاملInflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells
The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...
متن کاملTumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway.
BACKGROUND Vascular calcification is an ectopic calcification that commonly occurs in atherosclerosis. Because tumor necrosis factor-alpha (TNF-alpha), a pleiotropic cytokine found in atherosclerotic lesions, is also a regulator of bone formation, we investigated the role of TNF-alpha in in vitro vascular calcification. METHODS AND RESULTS A cloned subpopulation of bovine aortic smooth muscle...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملAMP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces Features of Atherosclerotic Plaque Stability.
RATIONALE AMP-activated protein kinase (AMPK) has been reported to play a protective role in atherosclerosis. However, whether AMPKα2 controls atherosclerotic plaque stability remains unknown. OBJECTIVE The aim of this study was to evaluate the impact of AMPKα2 deletion on atherosclerotic plaque stability in advanced atherosclerosis at the brachiocephalic arteries and to elucidate the underly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 119 3 شماره
صفحات -
تاریخ انتشار 2016