First Results of Estimating Surface Soil Moisture in the Vegetated Areas Using ASAR and Hyperion Data: The Chinese Heihe River Basin Case Study
نویسندگان
چکیده
This study introduces a new approach to estimate surface soil moisture in vegetated areas using Synthetic Aperture Radar (SAR) and hyperspectral data. To achieve this, the Michigan Microwave Canopy Scattering (MIMICS) model was initially used to simulate backscatter from vegetated surfaces containing various canopy water contents, across three frequency bands (i.e., L, S, and C). Using this simulated dataset, the influence of the canopy water content on the backscattered signals was further analyzed. In addition, we developed a modified Water-Cloud model which adds in the crown-ground interaction term. Finally, a soil moisture retrieval model for an agricultural region was developed. Alternating polarization data with ASAR and Hyperion hyperspectral data were used to retrieve soil moisture and validate the feasibility of the retrieval model. The field measured data from the Heihe river basin was used to confirm the proposed model. Results revealed an average absolute deviation (AAD) and average absolute relative deviation (AARD) of 0.051 cm3·cm−3 and 19.7%, respectively, between the estimated soil moisture and the field measurements. OPEN ACCESS Remote Sens. 2014, 6 12056
منابع مشابه
Soil Moisture Mapping in Vegetated Area Using Landsat and Envisat ASAR Data
Physical model is always complicated to estimate soil moisture content, while machine learning algorithms have potential advantages in retrieving information from remote sensing data. This paper takes the middle stream of Heihe River Basin in China as the study area. The neural network, one of the most common machine learning algorithms, is used to retrieve soil moisture from active microwave d...
متن کاملEstimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soi...
متن کاملRecognizing the eroded areas using the surface albedo algorithm of Landsat 8 satellite imagery (case study of basin Jajrood)
Soil is one of the most important natural resources of any country. the erosion causes not only the depletion of the soil and the loss of the land, causing great and irreparable damages, but also with the deposition of materials in streams, reservoirs, ports, and reduced pool capacity. Therefore, it should not be underestimated. In this study, we identify and zoning of the erosion areas in the ...
متن کاملOptimization of runoff Coefficient and Concentration Time in Estimating Flood Discharge Values by SCS Method (Case Study: Catchment Basin of Kohanrood River)
Estimation of floods in a basin with various return periods is one of the effective management strategies for reducing flood damage. One of the methods for estimating flood discharge is to make synthetic unit hydrograph using the physical characteristics of the basin. The more accurate inputs of the model, the more validated results. Hence, in basins in which Instantaneous peak discharge is rec...
متن کاملMapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion
Mapping soil texture in a river basin is critically important for eco-hydrological studies and water resource management at the watershed scale. However, due to the scarcity of in situ observation of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods. Here, we used an integrated method based on fuzzy logic theory and data fusion to map the so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014