Passive immunization with tenascin-R (TN-R) polyclonal antibody promotes axonal regeneration and functional recovery after spinal cord injury in rats.

نویسندگان

  • Jian You
  • Sun-Quan Hong
  • Mao-Ying Zhang
  • Hai-Lin Zhao
  • Tian-Zhu Liu
  • Hong-Long Zhou
  • Ying-Qian Cai
  • Zhi-Min Xu
  • Yang Guo
  • Xiao-Dan Jiang
  • Ru-Xiang Xu
چکیده

Tenascin-R (TN-R) is a neural specific protein and an important molecule involved in inhibition of axonal regeneration after spinal cord injury (SCI). Here we report on rabbit-derived TN-R polyclonal antibody, which acts as a TN-R antagonist with high titer and high specificity, promoted neurite outgrowth and sprouting of rat cortical neurons cultured on the inhibitory TN-R substrate in vitro. When locally administered into the lesion sites of rats received spinal cord dorsal hemisection, these TN-R antibodies could significantly decrease RhoA activation and improve functional recovery from corticospinal tract (CST) transection. Thus, passive immunotherapy with specific TN-R antagonist may represent a promising repair strategy following acute SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats

Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...

متن کامل

RGMa inhibition promotes axonal growth and recovery after spinal cord injury

Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, ...

متن کامل

Thermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury

Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....

متن کامل

Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury.

BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) has been proposed as a potential therapy for spinal cord injury (SCI). We aimed to demonstrate that 810 nm light can penetrate deep into the body and promote neuronal regeneration and functional recovery. STUDY DESIGN/MATERIALS AND METHODS Adult rats underwent a T9 dorsal hemisection, followed by treatment with an 810 nm, 150 mW diode laser (...

متن کامل

Cell Therapy in Spinal Cord Injury: a Mini- Reivew

Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 525 2  شماره 

صفحات  -

تاریخ انتشار 2012