Vascular mechanisms controlling a constant blood supply to the brain ("autoregulation").

نویسندگان

  • G I Mchedlishvili
  • N P Mitagvaria
  • L G Ormotsadze
چکیده

Vascular Mechanisms Controlling a Constant Blood Supply to the Brain ("A utor emulation") • The segmental resistance in the major arteries of the brain and the respective smaller cerebral arteries carrying blood from the circle of Willis was computed (with a mathematical method developed recently) using the inlet and outlet pressures of the internal carotid arteries, as well as the venous pressure in the brain sinuses of dogs. Under the conditions of stepwise changes of the perfusion pressure the following localization of "autoregulatory" responses of the cerebral arteries has been found: changes in the inlet pressure of the internal carotid artery produced corresponding changes of its vascular resistance resulting in a relative constancy of the outlet pressure of the artery, i.e., pressure in the circle of Willis; resistance changes in the smaller brain arteries were evident only when the alterations of the perfusion pressure were too big and the major arteries were unable to eliminate the disturbance. The responses of the internal carotid arteries were eliminated when their muscular layer was maintained normal, but deprived of the nervous control (when the arteries were continuously perfused with blood or oxygenated Ringer-Krebs bicarbonate solution shortly after the death of the animal). Thus, evidence was obtained that the vascular responses were brought about by a nervous and not by a purely muscular mechanism, as is usually assumed. Additional

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation between Cerebral Hemodynamic and Perfusion Pressure Changes in Non-Human Primates.

The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral autoregulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impa...

متن کامل

Autoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures

Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...

متن کامل

Induced hypotension and brain ischaemia.

Autoregulation is the term used to describe the maintenance of constant perfusion over a range of arterial pressures. Autoregulation occurs in all vascular beds, but other mechanisms also act on vascular control, for example autonomic activity and plasma concentrations of hormones. The influence of these other mechanisms varies widely between different circuits, so that the effect of induced hy...

متن کامل

Blood viscosity modulates tissue perfusion: sometimes and somewhere.

Each organ possesses specific properties for controlling microvascular perfusion. Such specificity provides an opportunity to design transfusion fluids that target thrombo-embolic or vasospasm-induced ischemia in a particular organ or that optimize overall perfusion from systemic shock. The role of viscosity in the design of these fluids might be underestimated, because viscosity is rarely moni...

متن کامل

Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow.

Regulation of cerebral blood flow (CBF) is the result of multilevel mechanisms to maintain the appropriate blood supply to the brain while having to comply with the limited space available in the cranium. The latter requirement is ensured by the autoregulation of CBF, in which the pressure-sensitive myogenic response is known to play a pivotal role. However, in vivo increases in pressure are ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 1973