A two-part, viscoelastic foot model for use in gait simulations.

نویسندگان

  • L A Gilchrist
  • D A Winter
چکیده

A three-dimensional, two-part model of the foot, for use in a simulation of human gait, is presented. Previous simulations of gait have not included the foot segment (e.g. Siegler et al., 1982, J. Biomechanics 15, 415-425) or have fastened it to the ground (e.g. Onyshko and Winter, 1980, J. Biomechanics 13, 361-368). A foot model based on viscoelastic elements (e.g. Meglan, 1991, Ph.D. thesis, Ohio State Univ.), allows more freedom of movement and thus models the physical system more closely. The current model was developed by running simulations of the foot in isolation from just before heel contact to just after toe-off. The driving inputs to the simulation were the resultant ankle joint forces and moments taken from a gait analysis. Nine linear, vertically oriented spring/damper systems, positioned along the midline of the foot were used to model the combined viscoelastic behaviour of the foot, shoe and floor. Associated with each vertical spring/damper system were two orthogonally placed, linear, horizontal dampers used to provide the shear components of the ground reaction force. Torques at the metatarsal-phalangeal joint were supplied by a linear, torsional spring and damper. Control about the vertical axis and the long axis of the foot was achieved by the use of linear, torsional dampers. The predicted kinetic and kinematic values are very similar to those taken from the gait analysis. The model represents an improvement over previous work because the transition from swing to stance was smooth and continuous without the foot being constrained to any specific trajectory.

منابع مشابه

Evaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject

Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for...

متن کامل

Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator

The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...

متن کامل

A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.

Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are...

متن کامل

A superellipsoid-plane model for simulating foot-ground contact during human gait.

Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground ne...

متن کامل

Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.

Principles of muscle coordination in gait have been based largely on analyses of body motion, ground reaction force and EMG measurements. However, data from dynamical simulations provide a cause-effect framework for analyzing these measurements; for example, Part I (Gait Posture, in press) of this two-part review described how force generation in a muscle affects the acceleration and energy flo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of biomechanics

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 1996