Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons
نویسندگان
چکیده
The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38-1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles.
منابع مشابه
Gas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog AerosolsGas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog Aerosols
Gas/particle (G/P) partitioning is an important process that affects the deposition, chemical reactions, long-range transport, and impact on human and ecosystem health of atmospheric semivolatile organic compounds (SOCs). Gas/ particle partitioning coefficients (Kp) were measured in an outdoor chamber for a group of polynuclear aromatic hydrocarbons (PAHs) and n-alkanes sorbing to three types o...
متن کاملInflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors
Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentad...
متن کاملChemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes
We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10–C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogen...
متن کاملChamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake
This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH4)2SO4 seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or witho...
متن کاملSize distribution dynamics reveal particle-phase chemistry in organic aerosol formation.
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical e...
متن کامل