A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States.
نویسندگان
چکیده
An understanding of the spatial distribution of the black-legged tick, Ixodes scapularis, is a fundamental component in assessing human risk for Lyme disease in much of the United States. Although a county-level vector distribution map exists for the United States, its accuracy is limited by arbitrary categories of its reported presence. It is unknown whether reported positive areas can support established populations and whether negative areas are suitable for established populations. The steadily increasing range of I. scapularis in the United States suggests that all suitable habitats are not currently occupied. Therefore, we developed a spatially predictive logistic model for I. scapularis in the 48 conterminous states to improve the previous vector distribution map. We used ground-observed environmental data to predict the probability of established I. scapularis populations. The autologistic analysis showed that maximum, minimum, and mean temperatures as well as vapor pressure significantly contribute to population maintenance with an accuracy of 95% (p < 0.0001). A cutoff probability for habitat suitability was assessed by sensitivity analysis and was used to reclassify the previous distribution map. The spatially modeled relationship between I. scapularis presence and large-scale environmental data provides a robust suitability model that reveals essential environmental determinants of habitat suitability, predicts emerging areas of Lyme disease risk, and generates the future pattern of I. scapularis across the United States.
منابع مشابه
Modeling the Geographic Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States.
In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has...
متن کاملSpatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the popula...
متن کاملEstimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes scapularis
BACKGROUND The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. OBJECTIVES We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases...
متن کاملA determination of the spatial concordance between Lyme disease incidence and habitat probability of its primary vector Ixodes scapularis (black-legged tick).
The spatial distribution of Ixodes scapularis, the most common tick vector of the bacterium Borrelia burgdorferi, the cause of Lyme disease in humans, has not been studied previously in Texas, United States of America. It has only rarely been reported in this state, so its local, spatial relationship to the distribution of this disease is unknown. From an epidemiological perspective, one would ...
متن کاملThe Application of Remote Sensing and GIS Tools in the Study of Lyme Disease Risk Prediction
Lyme disease has become one of the most prevalent vector borne diseases in the United States and threatens to expand its territory if current warming trends continue. Many investigators propose that an increase in Lyme disease distribution may be caused by a shift in the habitat range of the blacklegged tick, Ixodes scapularis, as a response to climate change. Improved knowledge of the environm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 111 شماره
صفحات -
تاریخ انتشار 2003