Multiplicative Partitions

نویسندگان

  • Marc Chamberland
  • Colin Johnson
  • Alice Nadeau
  • Bingxi Wu
چکیده

New formulas for the multiplicative partition function are developed. Besides giving a fast algorithm for generating these partitions, new identities for additive partitions and the Riemann zeta function are also produced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Convergence for Random Partitions with Multiplicative Measures

Let Pn be the space of partitions of integer n ≥ 0, P the space of all partitions, and define a class of multiplicative measures induced by Fβ(z) = ∏ k(1 − zk)k β with β > −1. Based on limit shapes and other asymptotic properties studied by Vershik, we establish normal convergence for the size and parts of random partitions.

متن کامل

A “Fourier Transform” for Multiplicative Functions on Non-Crossing Partitions

We describe the structure of the group of normalized multiplicative functions on lattices of noncrossing partitions. As an application, we give a combinatorial proof of a theorem of D. Voiculescu concerning the multiplication of free random variables.

متن کامل

MULTIPLICATIVE PROPERTIES OF THE NUMBER OF k-REGULAR PARTITIONS

In a previous paper of the second author with K. Ono, surprising multiplicative properties of the partition function were presented. Here, we deal with k-regular partitions. Extending the generating function for k-regular partitions multiplicatively to a function on k-regular partitions, we show that it takes its maximum at an explicitly described small set of partitions, and can thus easily be...

متن کامل

Zeons, Lattices of Partitions, and Free Probability

Central to the theory of free probability is the notion of summing multiplicative functionals on the lattice of non-crossing partitions. In this paper, a graph-theoretic perspective of partitions is investigated in which independent sets in graphs correspond to non-crossing partitions. By associating particular graphs with elements of “zeon” algebras (commutative subalgebras of fermion algebras...

متن کامل

A multiplicative deformation of the Möbius function for the poset of partitions of a multiset

The Möbius function of a partially ordered set is a very convenient formalism for counting by inclusion-exclusion. An example of central importance is the partition lattice, namely the partial order by refinement on partitions of a set {1, . . . , n}. It seems quite natural to generalize this to partitions of a multiset, i.e. to allow repetition of the letters. However, the Möbius function is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013