Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase
نویسندگان
چکیده
BACKGROUND Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. RESULTS A bacterial laccase (WlacD) was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ) anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG) 25 and diazo-dye Acid Red (AR) 18. The results showed that decolorization of both dyes is Cu(2+)- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l) with relative decolorization values of 91.2% (3 h) and 97.1% (18 h), as well as high activity to AR18 (1 g/l) by 80.5% (3 h) and 89.0% (18 h), was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l). No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved via a subsequent 4-h cell culturing. CONCLUSIONS This study demonstrates, for the first time, the methodology by which the engineered P. putida with surface-immobilized laccase was successfully used as regenerable biocatalyst for biodegrading synthetic dyes, thereby opening new perspectives in the use of biocatalysis in industrial dye biotreatment.
منابع مشابه
Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta.
Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halide...
متن کاملDecolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads
BACKGROUND Decolorization of hazardous synthetic dyes using laccases in both free and immobilized form has gained attention during the last decades. The present study was designed to prepare immobilized laccase (purified from Paraconiothyrium variabile) on porous silica beads followed by evaluation of both free and immobilized laccases for decolorization of two synthetic dyes of Acid Blue 25 an...
متن کاملHyper-Production of Laccase By Pseudomonas putida LUA15.1 through Mutagenesis
Laccases (benzenediol: oxygen oxidoreductases, EC 1.10.3.2) are multicopper blue oxidases that are widely distributed in higher plants, some insects, fungi and bacteria [1]. Microbial enzymes continue to draw greater attention as alternative to chemical processes which would enable the industries to meet the increasingly stringent environment requirements to reduce the pollution load. The highl...
متن کاملImmobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes
Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl(2) solution. The obtained data showed that both immobilized and free enzymes acted opt...
متن کامل