Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection

نویسندگان

  • Xin Gong
  • Hongwu Qian
  • Xinhui Zhou
  • Jianping Wu
  • Tao Wan
  • Pingping Cao
  • Weiyun Huang
  • Xin Zhao
  • Xudong Wang
  • Peiyi Wang
  • Yi Shi
  • George F. Gao
  • Qiang Zhou
  • Nieng Yan
چکیده

Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2.

Export of LDL-derived cholesterol from lysosomes requires the cooperation of the integral membrane protein Niemann-Pick C1 (NPC1) and a soluble protein, Niemann-Pick C2 (NPC2). Mutations in the genes encoding these proteins lead to Niemann-Pick disease type C (NPC). NPC2 binds to NPC1's second (middle), lumenally oriented domain (MLD) and transfers cholesterol to NPC1's N-terminal domain (NTD)....

متن کامل

Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection

Niemann-Pick C1 (NPC1) is a lysosomal membrane protein that exports cholesterol derived from receptor-mediated uptake of LDL, and it also mediates cellular entry of Ebola virus. Cholesterol export is inhibited by nanomolar concentrations of U18666A, a cationic sterol. To identify the target of U18666A, we synthesized U-X, a U18666A derivative with a benzophenone that permits ultraviolet-induced...

متن کامل

Structure of human Niemann-Pick C1 protein.

Niemann-Pick C1 protein (NPC1) is a late-endosomal membrane protein involved in trafficking of LDL-derived cholesterol, Niemann-Pick disease type C, and Ebola virus infection. NPC1 contains 13 transmembrane segments (TMs), five of which are thought to represent a "sterol-sensing domain" (SSD). Although present also in other key regulatory proteins of cholesterol biosynthesis, uptake, and signal...

متن کامل

Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 : Nature : Nature Publishing Group

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available1. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes2. Additional host factors in the endosomal co...

متن کامل

Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3beta-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2016