Exploring events and distributed representations of text in multi-document summarization
نویسندگان
چکیده
In this article, we explore an event detection framework to improve multi-document summarization. Our approach is based on a two-stage single-document method that extracts a collection of key phrases, which are then used in a centrality-as-relevance passage retrieval model. We explore how to adapt this singledocument method for multi-document summarization methods that are able to use event information. The event detection method is based on Fuzzy Fingerprint, which is a supervised method trained on documents with annotated event tags. To cope with the possible usage of different terms to describe the same event, we explore distributed representations of text in the form of word embeddings, which contributed to improve the summarization results. The proposed summarization methods are based on the hierarchical combination of single-document summaries. The automatic evaluation and human study performed show that these methods improve upon current state-of-the-art multi-document summarization systems on twomainstream evaluation datasets, DUC 2007 and TAC 2009. We show a relative improvement in ROUGE-1 scores of 16% for TAC 2009 and of 17% for DUC 2007. © 2015 Published by Elsevier B.V.
منابع مشابه
A survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملImproving Multi-Document Summarization via Text Classification
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel summarization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSu...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملEXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS
Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...
متن کاملSystematic literature review of fuzzy logic based text summarization
Information Overloadrq is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 94 شماره
صفحات -
تاریخ انتشار 2016