Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study.
نویسندگان
چکیده
The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of Si(n)M(+) (n = 4-11 for M = V, and n = 6-11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding Si(n)M(+)·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si(9)Cu(+), Si(11)Cu(+), and Si(10)V(+), the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal's 3d orbitals in the binding of the dopant atoms.
منابع مشابه
The structures of neutral transition metal doped silicon clusters, Si(n)X (n = 6-9; X = V, Mn).
We present a combined experimental and theoretical investigation of small neutral vanadium and manganese doped silicon clusters Si(n)X (n = 6-9, X = V, Mn). These species are studied by infrared multiple photon dissociation and mass spectrometry. Structural identification is achieved by comparison of the experimental data with computed infrared spectra of low-lying isomers using density functio...
متن کاملFast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate
Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...
متن کاملSTUDY ON THE COMPLEX FORMATION BETWEEN N-PROPYLSALICYLIDENE BASED ON SILICA AS ION EXCHANGER AND SOME TRANSITION METAL IONS
N-propylsalicylidene based on silica as ion exchanger (IE) was used for the separation by complexation of Mn2+, Co2+, Ni2+, Cu2+, Hg2+, Cr3+, Fe3+, and UO22+ from their parent solutions. IE and its metal complexes are characterized by elemental analysis, electronic and infrared spectra, in addition to thermal analysis in atmospheric pressure. The mode of chelation and the proposed geometric str...
متن کاملStructures, stabilities and spectral properties of borospherene B44− and metalloborospherenes MB440/− (M = Li, Na, and K)
Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are carried out to study the stabilities, photoelectron, infrared, Raman and electronic absorption spectra of borospherene B44- and metalloborospherenes MB440/- (M = Li, Na, and K). It is found that all atoms can form stable exohedral metalloborospherenes M&B440/-, whereas only Na and K atoms can ...
متن کاملComputational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption
First-principle calculations were carried out to investigate the adsorption of CO over Cun nanoclusters. The structural, spectroscopic and electronic properties like optimized geometries, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, binding energy, adsorption energy, vibrational frequency and density of states (DOSs) of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 44 شماره
صفحات -
تاریخ انتشار 2010