Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators⋆

نویسنده

  • Miloslav ZNOJIL
چکیده

One-dimensional unitary scattering controlled by non-Hermitian (typically, PT -symmetric) quantum Hamiltonians H 6= H is considered. Treating these operators via Runge–Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain nonequivalent short-range metric operators Θ 6= I represented, in Runge–Kutta approximation, by (2R− 1)-diagonal matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of resolvent and scattering resonances on quantum graphs

We discuss resonances for Schrödinger operators on metric graphs which consists of a finite compact part and a finite number of halflines attached to it; the vertex coupling is assumed to be of the δ-type or certain modifications of it. Using exterior complex scaling on the graph we show that the resolvent and scattering resonances coincide in this case.

متن کامل

Multi-valued operators with respect $wt$-distance on metric type spaces

‎Recently‎, ‎Hussain et al.‎, ‎discussed the concept of $wt$-distance on a‎ ‎metric type space‎. ‎In this paper‎, ‎we prove some fixed‎ ‎point theorems for classes of contractive type multi-valued operators‎, ‎by using $wt$-distances in the setting of a complete metric type space‎. ‎These results generalize a result of Feng and Liu on multi-valued operators.

متن کامل

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

On recursion operators for elliptic models

New quasilocal recursion and Hamiltonian operators for the Krichever-Novikov and the LandauLifshitz equations are found. It is shown that the associative algebra of quasilocal recursion operators for these models is generated by a couple of operators related by an elliptic curve equation. A theoretical explanation of this fact for the Landau-Lifshitz equation is given in terms of multiplicators...

متن کامل

Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2 Chain.

Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1/2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009