Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships

نویسندگان

  • Hoori Ajami
  • Peter A. Troch
  • Thomas Maddock
  • Thomas Meixner
  • Chris Eastoe
چکیده

[1] Despite the importance of mountainous catchments for providing freshwater resources, especially in semi-arid regions, little is known about key hydrological processes such as mountain block recharge (MBR). Here we implement a data-based method informed by isotopic data to quantify MBR rates using recession flow analysis. We applied our hybrid method in a semi-arid sky island catchment in southern Arizona, United States. Sabino Creek is a 91 km catchment with its sources near the summit of the Santa Catalina Mountains northeast of Tucson. Southern Arizona’s climate has two distinct wet seasons separated by prolonged dry periods. Winter frontal storms (November–March) provide about 50% of annual precipitation, and summers are dominated by monsoon convective storms from July to September. Isotope analyses of springs and surface water in the Sabino Creek catchment indicate that streamflow during dry periods is derived from groundwater storage in fractured bedrock. Storage-discharge relationships are derived from recession flow analysis to estimate changes in storage during wet periods. To provide reliable estimates, several corrections and improvements to classic base flow recession analysis are considered. These corrections and improvements include adaptive time stepping, data binning, and the choice of storage-discharge functions. Our analysis shows that (1) incorporating adaptive time steps to correct for streamflow measurement errors improves the coefficient of determination, (2) the quantile method is best for streamflow data binning, (3) the choice of the regression model is critical when the stage-discharge function is used to predict changes in bedrock storage beyond the maximum observed flow in the catchment, and (4) the use of daily or night-time hourly streamflow does not affect the form of the storage-discharge relationship but will impact MBR estimates because of differences in the observed range of streamflow in each series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers

In this study we propose a multi-source data approach for quantifying long-term flooding and aquifer recharge in ungauged ephemeral rivers. The methodology is applied to the Buffels River, at 9000 km2 the largest ephemeral river in Namaqualand (NW South Africa), a region with scarce stream flow records limiting research investigating hydrological response to global change. Daily discharge and a...

متن کامل

Temporal scaling of groundwater discharge in dual and multicontinuum catchment models

[1] This paper presents a multicontinuum approach to model fractal temporal scaling of catchment response in hydrological systems. The temporal scaling of discharge is quantified in frequency domain by the transfer function HðxÞ, which is defined as the ratio between the spectra of catchment response and recharge time series. The transfer function may scale with frequency x as HðxÞ x2b. While t...

متن کامل

Case studies of groundwater – surface water interactions and scale relationships in small alluvial aquifers

An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers tend to vary from discharge water bodies in the dry season, to recharge water bodies during cert...

متن کامل

Hysteresis and scale in catchment storage, flow and transport

The closure problem of representing hydrological boundary fluxes given the state of the system has been described as the scientific ‘Holy Grail’ of hydrology. This relationship between storage state and flux should be hysteretic and scale dependent because of the differences between velocities and celerities in a hydrological system—effectively velocities are storage controlled, and celerities ...

متن کامل

Evaluating catchment-scale hydrological modeling by means of terrestrial gravity observations

[1] In a previous study (Hasan et al., 2006) we applied time series analysis and distributed hydrological modeling techniques to investigate the effect of hydrological processes on observed terrestrial gravity residuals. In this study we apply terrestrial gravity observations (measured in one location) to constrain simple hydrological models in a catchment around the gravimeter. A superconducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011