Equilibria of ‘Discrete’ Integrable Systems and Deformation of Classical Orthogonal Polynomials
نویسندگان
چکیده
The Ruijsenaars-Schneider systems are ‘discrete’ version of the Calogero-Moser (CM) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e±β p (β′ is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruijsenaars-Schneider systems based on classical root systems. These are deformation of the classical orthogonal polynomials, the Hermite, Laguerre and Jacobi polynomials which describe the equilibrium positions of the corresponding Calogero and Sutherland systems. The orthogonality of the original polynomials is inherited by the deformed ones which satisfy three-term recurrence and certain functional equations. The latter reduce to the celebrated second order differential equations satisfied by the classical orthogonal polynomials.
منابع مشابه
Semi-classical Laguerre polynomials and a third order discrete integrable equation
The connection between semi-classical orthogonal polynomials and discrete integrable systems is well established. The earliest example of a discrete integrable system in semi-classical orthogonal polynomials can be attributed first to Shohat in 1939 [16], then second by Freud [10] in 1976. However it wasn’t until the 1990’s, when the focus within integrable systems shifted from continuous to di...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملCalogero-sutherland-moser Systems, Ruijsenaars-schneider-van Diejen Systems and Orthogonal Polynomials
The equilibrium positions of the multi-particle classical Calogero-Sutherland-Moser (CSM) systems with rational/trigonometric potentials associated with the classical root systems are described by the classical orthogonal polynomials; the Hermite, Laguerre and Jacobi polynomials. The eigenfunctions of the corresponding single-particle quantum CSM systems are also expressed in terms of the same ...
متن کاملIntegrable systems on the lattice and orthogonal polynomials of discrete variable
Some particular examples of classical and quantum systems on the lattice are solved with the help of orthogonal polynomials and its connection to continuous models are explored.
متن کاملBi-orthogonal Polynomials on the Unit Circle, Regular Semi-classical Weights and Integrable Systems
Abstract. The theory of bi-orthogonal polynomials on the unit circle is developed for a general class of weights leading to systems of recurrence relations and derivatives of the polynomials and their associated functions, and to functional-difference equations of certain coefficient functions appearing in the theory. A natural formulation of the Riemann-Hilbert problem is presented which has a...
متن کامل