Weyl geometry and the nonlinear mechanics of distributed point defects
نویسندگان
چکیده
The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects—where the body is stress-free—is a flat Weyl manifold, i.e. a manifold with an affine connection that has non-metricity with vanishing traceless part, but both its torsion and curvature tensors vanish. Given a spherically symmetric point defect distribution, we construct its Weyl material manifold using the method of Cartan’s moving frames. Having the material manifold, the anelasticity problem is transformed to a nonlinear elasticity problem and reduces the problem of computing the residual stresses to finding an embedding into the Euclidean ambient space. In the case of incompressible neo-Hookean solids, we calculate explicitly this residual stress field. We consider the example of a finite ball and a point defect distribution uniform in a smaller ball and vanishing elsewhere. We show that the residual stress field inside the smaller ball is uniform and hydrostatic. We also prove a nonlinear analogue of Eshelby’s celebrated inclusion problem for a spherical inclusion in an isotropic incompressible nonlinear solid.
منابع مشابه
Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملRecurrent metrics in the geometry of second order differential equations
Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...
متن کاملNon-Metricity and the Nonlinear Mechanics of Distributed Point Defects∗
We discuss the relevance of non-metricity in a metric-affine manifold (a manifold equipped with a connection and a metric) and the nonlinear mechanics of distributed point defects. We describe a geometric framework in which one can calculate analytically the residual stress field of nonlinear elastic solids with distributed point defects. In particular, we use Cartan’s machinery of moving frame...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملInvestigation of Vibrational Behavior of Perfect and Defective Carbon Nanotubes Using Non–Linear Mass–Spring Model
In the present study, the effects of arrangement and distribution of multifarious types of defects on fundamental frequency of carbon nanotubes are investigated with respect to different chirality and boundary conditions. Interatomic interactions between each pair of carbon atoms are modeled using two types of non–linear spring–like elements. To obtain more information about the influences of d...
متن کامل