Improved Bounds on the Length of Maximal Abelian Square-free Words

نویسنده

  • Evan M. Bullock
چکیده

A word is abelian square-free if it does not contain two adjacent subwords which are permutations of each other. Over an alphabet Σk on k letters, an abelian squarefree word is maximal if it cannot be extended to the left or right by letters from Σk and remain abelian square-free. Michael Korn proved that the length `(k) of a shortest maximal abelian square-free word satisfies 4k − 7 ≤ `(k) ≤ 6k − 10 for k ≥ 6. In this paper, we refine Korn’s methods to show that 6k−29 ≤ `(k) ≤ 6k−12 for k ≥ 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved bounds on the number of ternary square-free words

Improved upper and lower bounds on the number of squarefree ternary words are obtained. The upper bound is based on the enumeration of square-free ternary words up to length 110. The lower bound is derived by constructing generalised Brinkhuis triples. The problem of finding such triples can essentially be reduced to a combinatorial problem, which can efficiently be treated by computer. In part...

متن کامل

The minimal density of a letter in an infinite ternary square - free word is 0 . 2746

We study the minimal density of letters in infinite square-free words. First, we give some definitions of minimal density in infinite words and prove their equivalence. Further, we propose a method that allows to strongly reduce an exhaustive search for obtaining lower bounds for minimal density. Next, we develop a technique for constructing square-free morphisms with extremely small density fo...

متن کامل

Abelian Square-Free Partial Words

Erdös raised the question whether there exist infinite abelian square-free words over a given alphabet (words in which no two adjacent subwords are permutations of each other). Infinite abelian square-free words have been constructed over alphabets of sizes as small as four. In this paper, we investigate the problem of avoiding abelian squares in partial words (sequences that may contain some h...

متن کامل

Avoiding abelian squares in partial words

Erdös raised the question whether there exist infinite abelian squarefree words over a given alphabet, that is, words in which no two adjacent subwords are permutations of each other. It can easily be checked that no such word exists over a three-letter alphabet. However, infinite abelian square-free words have been constructed over alphabets of sizes as small as four. In this paper, we investi...

متن کامل

A One-Sided Zimin Construction

A string is Abelian square-free if it contains no Abelian squares; that is, adjacent substrings which are permutations of each other. An Abelian square-free string is maximal if it cannot be extended to the left or right by concatenating alphabet symbols without introducing an Abelian square. We construct Abelian square-free finite strings which are maximal by modifying a construction of Zimin....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004