On Relaxing Determinism in Arithmetic Circuits
نویسندگان
چکیده
The past decade has seen a significant interest in learning tractable probabilistic representations. Arithmetic circuits (ACs) were among the first proposed tractable representations, with some subsequent representations being instances of ACs with weaker or stronger properties. In this paper, we provide a formal basis under which variants on ACs can be compared, and where the precise roles and semantics of their various properties can be made more transparent. This allows us to place some recent developments on ACs in a clearer perspective and to also derive new results for ACs. This includes an exponential separation between ACs with and without determinism; completeness and incompleteness results; and tractability results (or lack thereof) when computing most probable explanations (MPEs).
منابع مشابه
A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملApproximate Inference by Compilation to Arithmetic Circuits
Arithmetic circuits (ACs) exploit context-specific independence and determinism to allow exact inference even in networks with high treewidth. In this paper, we introduce the first ever approximate inference methods using ACs, for domains where exact inference remains intractable. We propose and evaluate a variety of techniques based on exact compilation, forward sampling, AC structure learning...
متن کاملLazy Arithmetic Circuits
Compiling a Bayesian network into a secondary structure, such as a junction tree or arithmetic circuit allows for offline computations before observations arrive, and quick inference for the marginal of all variables. However, query-based algorithms, such as variable elimination and recursive conditioning, that compute the posterior marginal of few variables given some observations, allow pruni...
متن کاملOptimization for Timing-Robust Asynchronous Circuits Based on Eager Evaluation
As process, temperature and voltage variations become significant in deep submicron design, timing closure becomes a critical challenge using synchronous CAD flows. One attractive alternative is to use robust asynchronous circuits which gracefully accommodate timing discrepancies. However, such timing-robust asynchronous circuits typically suffer from high area and latency overhead. In this pap...
متن کاملHigh-Speed Ternary Half adder based on GNRFET
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
متن کامل