CFD ANALYSIS OF NOx FORMATION IN WASTE-TO-ENERGY SYSTEMS USING DETAILED CHEMICAL KINETIC MODELING

نویسندگان

  • Alex Frank
  • Marco J. Castaldi
چکیده

This study was undertaken to better understand the governing processes and reaction conditions under which NOx is produced in Waste to Energy (WtE) boilers. A three dimensional CFD model was created and calculated using the GRI 3.0, 50 species, 309 step detailed chemical kinetic model (DCKM) for methane/ethane combustion. Model results for primary NOx emissions and other pollutants agree well with collected data, proving the fidelity of the model. NO was the primary pollutant accounting for approximately 99% of the total NOx emissions. Fuel bound nitrogen was found to be the main source of NO produced in the boiler with thermal and prompt mechanisms having lesser impacts. Three principal intermediates were identified in the formation of NO; NH, HNO, and NCO. The assumption of fuel nitrogen conversion to either NH3 or HCN is an unknown parameter that was shown to have a small impact on NO emissions, indicating that this is an area that should not be explored further in this continuing study. Furthermore, varying the boiler pressure had a small impact on final NO emissions, indicating that this is not a condition that should be considered for plant operation. The next phase of this research will include the development of a reduced DCKM in order to expedite the running of new scenarios for future studies as well as optimization of boiler geometry and combustion mixing to achieve the lowest possible NOx emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Pollution Formation in Waste-to-energy Systems Using Computational Fluid Dynamics

This investigation has been undertaken to better understand pollutant formation in Waste-to-Energy (WTE) systems by using Computation Fluid Dynamics (CFD). An above-grate gas phase only model was built and calculated in FLUENTTM with the intent of specifically studying the factors that influence the formation of NOx. Results are shown for a typical reciprocating-grate WTE boiler operating on mu...

متن کامل

CFD modeling for selective formation of propylene from methanol over synthesized Mn-substituted MFI metallosilicate catalyst

The high silica Mn-substituted MFI metallosilicate catalyst with Si/Al molar ratio of 220 and Si/Mn molar ratio of 50 was successfully synthesized by hydrothermal method. The catalyst sample was appropriately characterized by XRD, FE-SEM, EDX and BET techniques. The Mn-substituted MFI metallosilicate has not been reported as the potential catalyst for the methanol to propylene (MTP) reaction. T...

متن کامل

Numerical modeling of pollutant emissions in practical combustion systems using detailed chemical kinetics

Pollutant emissions from combustion systems are a major area of concern with today’s energy needs. Numerical simulations have helped with the design of clean and efficient combustion strategies over the years. However, with the emergence of new fuels and combustion modes, it is necessary to improve the computational models. In this research, improved NOx and soot models are developed which uses...

متن کامل

The Numerical Exergy Analysis of H2/Air Combustion with Detailed Chemical Kinetic Simulation Model

Energy and exergy concepts come from thermodynamics laws and are applicable to all fields of science and engineering. This study considers numerical simulations of combustion of hydrogen with air in a constant pressure environment and exergy terms according to first and second laws analysis using homemade code. Chemical kinetic model includes 20 reactions and 9 species.  At the first stage of p...

متن کامل

Numerical Modeling and Simulation of Highly Preheated and Diluted Air Combustion Furnaces

This paper presents some of the results of the modeling and simulation of an industrial furnace under the conventional combustion as well as under the highly preheated and diluted air combustion (HPDAC) conditions. The results are obtained using a computer program written by authors in FORTRAN language. It was found that, the HPDAC offers a more uniform and relatively moderate gas temperature p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012