Towards a Theoretical Understanding of Negative Transfer in Collective Matrix Factorization
نویسندگان
چکیده
Collective matrix factorization (CMF) is a popular technique to improve the overall factorization quality of multiple matrices presuming they share the same latent factor. However, it suffers from performance degeneration when this assumption fails, an effect called negative transfer (n.t.). Although the effect is widely admitted, its theoretical nature remains a mystery to date. This paper presents a first theoretical explanation of the n.t. effect in CMF. Under the statistical mini-max framework, we derive lower bounds for the CMF estimator and gain two insights. First, the n.t. effect can be explained as the rise of a bias term in the standard lower bound, which depends only on the structure of factor space but neither the estimator nor samples. Second, the n.t. effect can be explained as the rise of an dthroot function on the learning rate, where d is the dimension of a Grassmannian containing the subspaces spanned by latent factors. These discoveries are also supported in simulation, and suggest n.t.may be more effectively addressed via model construction other than model selection.
منابع مشابه
Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملAn Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization
The aim of this paper is to provide some theoretical understanding of Bayesian non-negative matrix factorization methods. We derive an oracle inequality for a quasi-Bayesian estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence. We illustrate our theoretical results with a short numerical study along with a discussio...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کامل