Photocurrent measurements of supercollision cooling in graphene
نویسندگان
چکیده
The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot-electron cooling rate near the Fermi level by using graphene as a novel photothermal thermometer that measures the electron temperature (T(t)) as it cools dynamically. We find the photocurrent generated from graphene p–n junctions is well described by the energy dissipation rate CdT/dt = −A(T3 − T l ), where the heat capacity is C = αT and Tl is the base lattice temperature. These results are in disagreement with predictions of electron–phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision cooling mechanism. We find that the supercollision model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to∼3,000 K) and lattice (10–295 K) temperatures investigated.
منابع مشابه
Energy flows in graphene: hot carrier dynamics and cooling.
Long lifetimes of hot carriers can lead to qualitatively new types of responses in materials. The magnitude and time scales for these responses reflect the mechanisms governing energy flows. We examine the microscopics of two processes which are key for energy transport, focusing on the unusual behavior arising due to graphene's unique combination of material properties. One is hot carrier gene...
متن کاملCompeting channels for hot-electron cooling in graphene.
We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T(*)), we found that both the...
متن کاملUltrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics.
The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graph...
متن کاملPulsed Near-IR Photoresponse in a Bi-metal Contacted Graphene Photodetector
We use an ultra-fast near-infrared pulse coincidence technique to study the time, temperature, and power dependence of the photoresponse of a bi-metal contacted graphene photodetector. We observe two components of the photovoltage signal. One component is gate-voltage dependent, linear in power at room temperature and sub-linear at low temperature-consistent with the hot-electron photothermoele...
متن کاملTunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing.
Hot electron effects in graphene are significant because of graphene's small electronic heat capacity and weak electron-phonon coupling, yet the dynamics and cooling mechanisms of hot electrons in graphene are not completely understood. We describe a novel photocurrent spectroscopy method that uses the mixing of continuous-wave lasers in a graphene photothermal detector to measure the frequency...
متن کامل