Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA.

نویسندگان

  • Kia Vest Petersen
  • Jan Martinussen
  • Peter Ruhdal Jensen
  • Christian Solem
چکیده

We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attB(min)), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attB(min) site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion

BACKGROUND Practical approaches for multigene transformation and gene stacking are extremely important for engineering complex traits and adding new traits in transgenic crops. Trait deployment by gene stacking would greatly simplify downstream plant breeding and trait introgression into cultivars. Gene stacking into pre-determined genomic sites depends on mechanisms of targeted DNA integration...

متن کامل

Analysis of junction sequences resulting from integration at nonhomologous loci in Neurospora crassa.

We have analyzed the junctions involved in two examples of ectopic integration of plasmids containing the am+ (glutamate dehydrogenase) gene into a strain of Neurospora crassa bearing a complete deletion of the am locus. In one transformed strain a single copy of plasmid DNA had been integrated into linkage group (LG) III DNA without the loss of chromosomal DNA. In contrast, 450 bp had been los...

متن کامل

Method for detection and identification of multiple chromosomal integration sites in transgenic animals created with lentivirus.

Transgene delivery systems, particularly those involving retroviruses, often result in the integration of multiple copies of the transgene throughout the host genome. Since site-specific silencing of trangenes can occur; it becomes important to identify the number and chromosomal location of the multiple copies of the transgenes in order to correlate inheritance of the transgene at a particular...

متن کامل

Identification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome

Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...

متن کامل

Utilization of Site-Specific Recombination in Biopharmaceutical Production

Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 2013