Buckling as an origin of ordered cuticular patterns in flower petals.
نویسندگان
چکیده
The optical properties of plant surfaces are strongly determined by the shape of epidermal cells and by the patterning of the cuticle on top of the cells. Combinations of particular cell shapes with particular nanoscale structures can generate a wide range of optical effects. Perhaps most notably, the development of ordered ridges of cuticle on top of flat petal cells can produce diffraction-grating-like structures. A diffraction grating is one of a number of mechanisms known to produce 'structural colours', which are more intense and pure than chemical colours and can appear iridescent. We explore the concept that mechanical buckling of the cuticle on the petal epidermis might explain the formation of cuticular ridges, using a theoretical model that accounts for the development of compressive stresses in the cuticle arising from competition between anisotropic expansion of epidermal cells and isotropic cuticle production. Model predictions rationalize cuticle patterns, including those with long-range order having the potential to generate iridescence, for a range of different flower species.
منابع مشابه
Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots.
BACKGROUND The aim of this paper is to discuss the controversial origins of petals from tepals or stamens and the links between the morphological expression of petals and floral organ identity genes in the core eudicots. SCOPE I challenge the widely held classical view that petals are morphologically derived from stamens in the core eudicots, and sepals from tepals or bracts. Morphological da...
متن کاملHierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials
Hierarchically structured flower leaves (petals) of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the "Cassie impregnating wetting state", which is also known as the "petal effect". By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface ...
متن کاملFlower Petal Cell Walls: Changes Associated with Flower Opening and Senescence*
Flowers are prized as objects of great beauty and diversity, and are commercially valuable (~US$4.5 billion in international trade yearly) and highly perishable. Biologically, flower petals have an important role in the lifecycle of plants, as they protect immature reproductive structures, then provide the attraction and accessibility needed for pollination to occur. Flower petal cell wall cons...
متن کاملSHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs
Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the r...
متن کاملThe Geometric Rosette : analysis of an Islamic decorative motif
1. Among the many different star-like motifs used in the geometrical art of Islam, there is one which stands out as distinctively "Islamic" (see fig. 1). We shall call this motif a geometric rosette, since it resembles a flower or rosette, with an outer ring formed by a variable number of "petals" encircling a central star. One possible interpretation of the formal, if not historical, origin of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 80 شماره
صفحات -
تاریخ انتشار 2013