Absorption, disposition kinetics, and metabolic pathways of cyclohexene oxide in the male Fischer 344 rat and female B6C3F1 mouse.
نویسندگان
چکیده
Cyclohexene oxide (CHO) is a monomer intermediate used in the synthesis of pesticides, pharmaceuticals, and perfumes. Although CHO has a variety of industrial uses where direct human exposure is possible, very little is known about its fate in the body. Therefore, the objectives of this study were to determine the absorption, distribution, metabolism, and excretion of cyclohexene oxide after oral, intravenous, and dermal exposure in male Fischer 344 rats and female B6C3F, mice. After intravenous administration of [14C]CHO (50 mg/kg), CHO was rapidly distributed, metabolized, and excreted into the urine. Plasma concentrations of CHO rapidly declined and were below the limit of detection within 60 min. Average (+/- SD) values for terminal disposition half-life, apparent volume of distribution at steady-state, and systemic body clearance were: 19.3 +/- 1.6 min; 0.44 +/- 0.08 liter/kg; and 31.3 +/- 0.5 ml/kg * min, respectively. After oral administration of [14C]CHO (10 and 100 mg/kg), it was found that 14C-equivalents were rapidly excreted in the urine of both species. At 48 hr, the majority of the dose (73-93%) was recovered in urine, whereas fecal elimination accounted for only 2-5% of the dose. At no time after oral administration was parent CHO detected in the blood. However, its primary metabolite cyclohexane-1,2-diol was present for different lengths of time depending on the dose. Four metabolites were detected and identified in mouse urine by MS: cyclohexane-1,2-diol; cyclohexane-1,2-diol-O-glucuronide; N-acetyl-S-(2-hydroxycyclohexyl)-L-cysteine; and cyclohexane-1,2-diol-O-sulfate. The sulfate conjugate was not present in rat urine. Topical application of [14C]CHO (60 mg/kg) provided poor absorption in both species. The majority of 14C-equivalents applied dermally were recovered from the charcoal skin trap (approximately 90% of the dose). Only 4% of the dose was absorbed, and the major route of elimination was via the urine. To evaluate the toxicity of CHO, animals were given daily doses of CHO orally and topically for 28 days. No statistically significant changes in final body weights or relative organ weights were noted in rats or mice treated orally with CHO up to 100 mg/kg or up to 60 mg/kg when given topically. Very few lesions were found at necropsy, and none were considered compound related. In conclusion, regardless of route, CHO is rapidly eliminated and excreted into the urine. Furthermore, after either oral or dermal administration, it is unlikely that CHO reaches the systemic circulation intact due to its rapid metabolism, and is therefore unable to cause toxicity in the whole animal under the test conditions used in this study.
منابع مشابه
Glutathione conjugation of trichloroethylene in rats and mice: sex-, species-, and tissue-dependent differences.
Glutathione (GSH) conjugation of trichloroethylene (Tri) to form S-(1,2-dichlorovinyl)glutathione (DCVG) has been implicated in the nephrotoxicity and nephrocarcinogenicity of Tri. Marked sex- and species-dependent differences exist, however, in the susceptibility to Tri-induced renal toxicity, with the male rat being the most susceptible. The present study, therefore, focuses on potential diff...
متن کاملLung neoplasms in rodents after chronic administration of dimethyl hydrogen phosphite.
Dimethyl hydrogen phosphite (DMHP), an intermediate in the production of insecticides or herbicides, was administered by p.o. gavage for 2 yr to male Fischer 344/N rats and male and female B6C3F1 mice at doses of 0, 100, or 200 mg/kg and to female Fischer 344/N rats at doses of 0, 50 or 100 mg/kg. Dose related toxicity was seen in the lungs of treated male and female rats. The lung lesions were...
متن کاملKinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers
Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to E...
متن کاملBioassay of hydrazobenzene for possible carcinogenicity.
A bioassay of technical-grade hydrazobenzene for possible carcinogenicity was conducted using Fischer 344 rats and B6C3F1 mice. Hydrazobenzene was administered in the feed, at either of two concentrations, to groups of 50 male and 47 to 50 females animals of each species. The time-weighted average dietary concentrations used in the rat bioassay were 0.008, 0.03, 0.004, and 0.01 percent for low ...
متن کاملCharacterization of the disposition and toxicokinetics of N-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2.
Studies were conducted to characterize the effect of dose and route of administration on the disposition of N-butylpyridinium chloride (NBuPy-Cl), an ionic liquid with solvent properties. Urine was the major route of NBuPy-Cl excretion after intravenous (5 mg/kg), single oral (0.5, 5, or 50 mg/kg), or repeated oral (50 mg/kg/day, 5 days) administration to male F-344 rats and single oral (50 mg/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 25 3 شماره
صفحات -
تاریخ انتشار 1997