The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa

نویسندگان

  • Mark S. Ghiorso
  • Marc M. Hirschmann
  • Peter W. Reiners
چکیده

[1] We describe a newly calibrated model for the thermodynamic properties of magmatic silicate liquid. The new model, pMELTS, is based on MELTS [Ghiorso and Sack, 1995] but has a number of improvements aimed at increasing the accuracy of calculations of partial melting of spinel peridotite. The pMELTS algorithm uses models of the thermodynamic properties of minerals and the phase equilibrium algorithms of MELTS, but the model for silicate liquid differs from MELTS in the following ways: (1) The new algorithm is calibrated from an expanded set of mineral-liquid equilibrium constraints from 2439 experiments, 54% more than MELTS. (2) The new calibration includes mineral components not considered during calibration of MELTS and results in 11,394 individual mineral-liquid calibration constraints (110% more than MELTS). Of these, 4924 statements of equilibrium are from experiments conducted at elevated pressure (200% more than MELTS). (3) The pMELTS model employs an improved liquid equation of state based on a third-order Birch-Murnaghan equation, calibrated from high-pressure sink-float and shockwave experiments to 10 GPa. (4) The new model employs a revised set of end-member liquid components. The revised components were chosen to better span liquid composition-space. Thermodynamic properties of these components are optimized as part of the mineral-liquid calibration. Comparison of pMELTS to partial melting relations of spinel peridotite from experiments near 1 GPa indicates significant improvements relative to MELTS, but important outstanding problems remain. The pMELTS model accurately predicts oxide concentrations, including SiO2, for liquids from partial melting of MM3 peridotite at 1 GPa from near the solidus up to 25% melting. Compared to experiments, the greatest discrepancy is for MgO, for which the calculations are between 1 and 4% high. Temperatures required to achieve a given melt fraction match those of the experiments near the solidus but are 60 C high over much of the spinel lherzolite melting interval at this pressure. Much of this discrepancy can probably be attributed to overstabilization of clinopyroxene in pMELTS under these conditions. Comparison of pMELTS calculations to the crystallization and partial melting experiments of Falloon et al. [1999] shows excellent agreement but also suffers from exaggerated calculated stability of clinopyroxene. Finally, comparison of pMELTS Geochemistry Geophysics Geosystems AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society G Article

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melting of Model Martian Mantle at High-pressure: Implications for the Composition of the Martian Basalt Source Region

High-pressure melting experiments on the Homestead L5 ordinary chondrite were performed at 5 GPa in a multi-anvil device over a temperature interval that ranged from near solidus to near liquidus conditions. Near solidus silicate liquids of Homestead have higher CaO/Al2O3 and lower Mg# compared to solidus liquids of terrestrial peridotite (e.g.: KLB-1) at this pressure. The silicate portion of ...

متن کامل

ژئوشیمی رادیو ایزوتوپ‌های Rb–Sr و Sm–Nd و پتروژنز توده‌های نفوذی مرتبط با کانی‌سازی مس پورفیری غنی از طلای منطقه اکتشافی ماهرآباد (شمال هنیچ)، شرق ایران

The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineraliza...

متن کامل

Mantle melting beneath the Tibetan Plateau: Experimental constraints on ultrapotassic magmatism

[1] Phase equilibrium experiments on primitive Miocene olivine leucitite (Bb-107) from the Qiangtang terrane of the Tibetan Plateau were performed from 1.0 to 2.2 GPa and 1270 to 1440 C. The composition is multiply saturated with olivine and clinopyroxene from 1.2 to 2.2 GPa and 1340 C under nominally anhydrous conditions. Phase assemblages in the experiments have been used to model the effects...

متن کامل

Mineral / melt partitioning of trace elements during hydrous peridotite partial melting

This experimental study examines the mineral/ melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H2O, and are satur...

متن کامل

Origin of Lherzolitic Peridotites in Ab-Bid Ultramafic Complex (Hormozgan Province); Products of Mantle Metasomatism or Partial Melting Processes?

Lherzolite is one of the main units in the Ab-Bid ultramafic complex from Esfandagheh-HadjiAbad coloured mélange (South of Iran). The complex contains harzburgite, dunite, lherzolite and pyroxenite dykes and the lherzolites mainly occur in the margins. In the field, lherzolites occur as weakly foliated coarse-grained peridotites with shiny pyroxene grains and cut by neumerous pyroxenitic veins....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002