A redox-responsive mesoporous silica nanoparticle with a therapeutic peptide shell for tumor targeting synergistic therapy.

نویسندگان

  • Dong Xiao
  • Jing-Jing Hu
  • Jing-Yi Zhu
  • Shi-Bo Wang
  • Ren-Xi Zhuo
  • Xian-Zheng Zhang
چکیده

In this study, we report a novel redox-responsive mesoporous silica nanoparticle (MSN)-based nanocarrier, capping with a therapeutic peptide ((RGDWWW)2KC) containing a RGD target motif, for tumor targeting synergistic therapy, which is designated as TTSTMSN. The MSN was decorated with a tumor-targeting therapeutic peptide as a potential gatekeeper. The two branched peptides containing rich tryptophans allowed the pores to be blocked via π-π stacking and hydrophobic interactions. Once the drug loaded nanoparticles were taken up by the cancer cells through integrin-mediated endocytosis, the therapeutic peptide capping shells on the surface of MSNs were released, inducing the loaded drug to diffuse into the cytoplasm after breaking of the disulfide bonds, triggered by the high concentration of glutathione (GSH) in cancer cells. At the same time, the falling therapeutic rich tryptophans in the branched chains interacted with DNA due to the indole rings, leading to disturbance of the DNA structure through the strong π interactions and causing cell apoptosis. There is no such report on capping of drug loaded porous silica with a therapeutic peptide shell, co-delivering an anticancer drug and therapeutic agent for tumor targeting synergistic therapy, which will have great potential in developing multifunctional nanocarriers based on therapeutic peptides for synergistic treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery.

A redox-responsive mesoporous silica nanoparticle (RRMSN) was developed as a drug nanocarrier by noncovalent functionalization of MSNs with amphiphilic peptides containing the RGD ligand. The alkyl chain stearic acid (C18) with a thiol terminal group was anchored on the surface of MSNs via a disulfide bond, and the amphiphilic peptide (AP) C18-DSDSDSDSRGDS was coated by self-assembly through hy...

متن کامل

Multifunctional Enveloped Mesoporous Silica Nanoparticles for Subcellular Co-delivery of Drug and Therapeutic Peptide

A multifunctional enveloped nanodevice based on mesoporous silica nanoparticle (MSN) was delicately designed for subcellular co-delivery of drug and therapeutic peptide to tumor cells. Mesoporous silica MCM-41 nanoparticles were used as the core for loading antineoplastic drug topotecan (TPT). The surface of nanoparticles was decorated with mitochondria-targeted therapeutic agent (Tpep) contain...

متن کامل

Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging.

Uniform Au NRs-capped magnetic core/mesoporous silica shell nanoellipsoids (Au NRs-MMSNEs) were prepared by coating a uniform layer of Au NRs on the outer surface of a magnetic core/mesoporous silica shell nanostructure, based on a two-step chemical self-assembly process. This multifunctional nanocomposite integrate simultaneous chemotherapy, photo-thermotherapy, in vivo MR-, infrared thermal a...

متن کامل

MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica.

Targeting peptide-modified magnetic graphene-based mesoporous silica (MGMSPI) are synthesized, characterized, and developed as a multifunctional theranostic platform. This system exhibits many merits, such as biocompatibility, high near-infrared photothermal heating, facile magnetic separation, large T2 relaxation rates (r2), and a high doxorubicin (DOX) loading capacity. In vitro and in vivo r...

متن کامل

Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy.

Remote-controlled nanocarriers for drug delivery are of great promise to provide timely, sensitive and spatiotemporally selective treatments for cancer therapy. Due to convenient and precise manipulation, deep penetration through tissues and excellent biocompatibility, near-infrared (NIR) irradiation is a preferred external stimulus for triggering the release of loaded drugs. In this work, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 37  شماره 

صفحات  -

تاریخ انتشار 2016