Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

نویسندگان

  • Luka Peternel
  • Tomoyuki Noda
  • Tadej Petrič
  • Aleš Ude
  • Jun Morimoto
  • Jan Babič
  • Dingguo Zhang
چکیده

In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of an EMG-based NMES controller with a passive exoskeleton to support daily upper limb activities

MUNDUS is an assistive framework for recovering interaction capability of severely impaired people based on upper limb motor functions. Within this project, the present work aimed at integrating a commercial passive exoskeleton for weight support with an EMG-controlled neuroprosthesis for hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was...

متن کامل

A myosignal-based powered exoskeleton system

Integrating humans and robotic machines into one system offers multiple opportunities for creating assistive technologies that can be used in biomedical, industrial, and aerospace applications. The scope of the present research is to study the integration of a human arm with a powered exoskeleton (orthotic device) and its experimental implementation in an elbow joint, naturally controlled by th...

متن کامل

Trends and Challenges in EMG Based Control Scheme of Exoskeleton Robots- A Review

Ram Murat Singh is with the National Institute of Technical teachers Training and Research, Chandigarh, India (phone: +919041933679; e-mail: rammurat.singh@ gmail.com). Dr. S. Chatterji (Prof. and head, Electrical Engg deptt.) is with National Institute of Technical teachers Training and Research, Chandigarh, India (e-mail: [email protected]). Abstract—In the present review article the...

متن کامل

Effect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance

Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...

متن کامل

Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off

We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016