Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.
نویسندگان
چکیده
The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.
منابع مشابه
Conductivity of defectless graphene
Conductivity of graphene, a flat monolayer of carbon atoms, as a function of doping charge shows a pronounced minimum at the neutrality, compensation point. The theory predicts for this point a universal conductivity, whereas the experimental conductivity exceeds this prediction by few times. This discrepancy persists for long time now and may justify an additional study of zero gap semiconduct...
متن کاملCoulomb drag in graphene near the Dirac point.
We study Coulomb drag in graphene near the Dirac point, focusing on the regime of interaction-dominated transport. We establish a novel, graphene-specific mechanism of Coulomb drag based on fast interlayer thermalization, inaccessible by standard perturbative approaches. Using the quantum kinetic equation framework, we derive a hydrodynamic description of transport in double-layer graphene in t...
متن کاملScatteringmechanisms and Boltzmann transport in graphene
Different scattering mechanisms in graphene are explored and conductivity is calculated within the Boltzmann transport theory. We provide results for short-range scattering using the Random Phase Approximation for electron screening, as well as analytical expressions for the dependence of conductivity on the dielectric constant of the substrate. We further examine the effect of ripples on the t...
متن کاملScattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities
We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corre...
متن کاملBreit-Wigner-Fano line shapes in Raman spectra of graphene
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Excitation of electron-hole pairs in the vicinity of the Dirac cone by the Coulomb interaction gives rise to an asy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 117 8 شماره
صفحات -
تاریخ انتشار 2016