tsdb: A Compressed Database for Time Series

نویسندگان

  • Luca Deri
  • Simone Mainardi
  • Francesco Fusco
چکیده

Large-scale network monitoring systems require efficient storage and consolidation of measurement data. Relational databases and popular tools such as the Round-Robin Database show their limitations when handling a large number of time series. This is because data access time greatly increases with the cardinality of data and number of measurements. The result is that monitoring systems are forced to store very few metrics at low frequency in order to grant data access within acceptable time boundaries. This paper describes a novel compressed time series database named tsdb whose goal is to allow large time series to be stored and consolidated in realtime with limited disk space usage. The validation has demonstrated the advantage of tsdb over traditional approaches, and has shown that tsdb is suitable for handling a large number of time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge discovery in time series databases

Adding the dimension of time to databases produces time series databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. In this correspondence, we introduce a general methodology for knowledge discovery in TSDB. The process of knowledge discovery in TSDR includes cleaning and filtering of time series data, identifying the most important predicting att...

متن کامل

Gorilla: A Fast, Scalable, In-Memory Time Series Database

Large-scale internet services aim to remain highly available and responsive in the presence of unexpected failures. Providing this service often requires monitoring and analyzing tens of millions of measurements per second across a large number of systems, and one particularly effective solution is to store and query such measurements in a time series database (TSDB). A key challenge in the des...

متن کامل

KV-match: An Efficient Subsequence Matching Approach for Large Scale Time Series

Time series data have exploded due to the popularity of new applications, like data center management and IoT. Time series data management system (TSDB), emerges to store and query the large volume of time series data. Subsequence matching is critical in many time series mining algorithms, and extensive approaches have been proposed. However, the shift of distributed storage system and the perf...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

Search for Patterns in Compressed Time Series

We describe a technique for fast compression of time series, indexing of compressed series, and retrieval of series similar to a given pattern. The compression procedure identifies “important” points of a series and discards the other points. We use the important points not only for compression, but also for indexing a database of time series. Experiments show the effectiveness of this techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012