Recursions, Formulas, and Graph-theoretic Interpretations of Ramified Coverings of the Sphere by Surfaces of Genus

نویسنده

  • RAVI VAKIL
چکیده

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting transitive factorisations of permutations into transpositions.) These results prove a conjecture of Goulden and Jackson, and extend results of Hurwitz and many others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genus 0 and 1 Hurwitz Numbers : Recursions , Formulas , and Graph - Theoretic Interpretations Ravi

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting tra...

متن کامل

Ramified Coverings of the Riemann Sphere, Constellations, and Hypermaps on Surfaces

We review the theory of compact Riemann surfaces and connections between ramified coverings of the Riemann sphere, constellations, and hypermaps on surfaces. This note is based on the chapter 1 of [4].

متن کامل

The Number of Ramified Coverings of the Sphere by the Double Torus, and a General Form for Higher Genera

The number of ramified coverings of the sphere by the double torus, and a general form for higher genera * Abstract An explicit expression is obtained for the generating series for the number of ramified coverings of the sphere by the double torus, with elementary branch points and prescribed ramification type over infinity. Thus we are able to determine various linear recurrence equations for ...

متن کامل

Enumeration of ramified coverings of the sphere and 2-dimensional gravity

Let A be the algebra generated by the power series ∑nn−1qn/n! and ∑ nnqn/n! . We prove that many natural generating functions lie in this algebra: those appearing in graph enumeration problems, in the intersection theory of moduli spaces Mg,n and in the enumeration of ramified coverings of the sphere. We argue that ramified coverings of the sphere with a large number of sheets provide a model o...

متن کامل

Formulas, and Graph-theoretic Interpretations

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008