Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.
نویسندگان
چکیده
The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.
منابع مشابه
The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a β-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation...
متن کاملCalorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous
In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such...
متن کاملIncreased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast
A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced glucose in the growth medium leads to activation of the NAD+-dependent histone deacetylase Sir2. One mechanism proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels of NAD+ or NADH, and ultimately resulting in e...
متن کاملSir2 links chromatin silencing, metabolism, and aging.
Aging is manifested by a progressive decline in vitality over time leading to death. Studies in budding yeast allow aging to be followed in individual pedigrees of cells, that is, those of mother cells, consequent to many rounds of cell division (Mortimer and Johnston 1959). These studies have led to the general conclusion that the silencing protein Sir2 is a limiting component of longevity; de...
متن کاملQuantification of Protein Copy Number in Yeast: The NAD+ Metabolome
Saccharomyces cerevisiae is calorie-restricted by lowering glucose from 2% to 0.5%. Under low glucose conditions, replicative lifespan is extended in a manner that depends on the NAD+-dependent protein lysine deacetylase Sir2 and NAD+ salvage enzymes. Because NAD+ is required for glucose utilization and Sir2 function, it was postulated that glucose levels alter the levels of NAD+ metabolites th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2004