IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling
نویسندگان
چکیده
Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3(-/-)×Irf7(-/-) double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-)×Irf5(-/-)×Irf7(-/-) triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-)). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar(-/-) mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/-) mDC. The relative equivalence of TKO and Mavs(-/-) responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5.
منابع مشابه
Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells.
UNLABELLED Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in pr...
متن کاملInduction of IFN-β and the Innate Antiviral Response in Myeloid Cells Occurs through an IPS-1-Dependent Signal That Does Not Require IRF-3 and IRF-7
Interferon regulatory factors (IRF)-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-alpha/beta) induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV) infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-alpha levels...
متن کاملTANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis
Interferon regulatory factors (IRF)-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-a/b)induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7genes showed increased vulnerability to West Nile virus (WNV) infection. Whereas mice and cells lacking IRF-7 showedreduced IFN-a levels a...
متن کاملCutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to Chikungunya infection.
The host response to Chikungunya virus is dependent on the direct action of type I IFN on infected nonhematopoietic cells. Prior studies have demonstrated that multiple host sensors coordinate an antiviral response; however, the tissue source(s) and signaling pathways for IFN production remain unknown. In this study, we demonstrate that IRF-3 and IRF-7 are functionally redundant, but lack of bo...
متن کاملRole of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts.
The main pathway for the induction of type I interferons (IFN) by viruses is through the recognition of viral RNA by cytosolic receptors and the subsequent activation of interferon regulatory factor 3 (IRF-3), which drives IFN-alpha/beta transcription. In addition to their role in inducing an antiviral state, type I IFN also play a role in modulating adaptive immune responses, in part via their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013