Slow and fast (gamma) neuronal oscillations in the perirhinal cortex and lateral amygdala.

نویسندگان

  • D R Collins
  • J G Pelletier
  • D Paré
چکیده

Most lesion studies emphasize the distinct contributions of the amygdala and perirhinal cortex to memory. Yet, the presence of strong reciprocal excitatory projections between these two structures suggests that they are functionally coupled. To gain some insight into this issue, the present study examined whether the close anatomical ties existing between perirhinal and lateral amygdala (LA) neurons are expressed in their spontaneous activity. To this end, multiple simultaneous recordings of single unit discharges and local field potentials were performed in the LA and perirhinal cortex in ketamine-xylazine anesthetized cats. The perirhinal cortex and LA exhibited a similar pattern of spontaneous activity. Recordings at both sites were dominated by a slow focal oscillation at 1 Hz onto which was superimposed a faster rhythm (approximately 30 Hz) whose amplitude fluctuated cyclically. Computing crosscorrelograms between focal waves recorded simultaneously in the perirhinal cortex and LA revealed a close relationship between their spontaneous activity. Even when recording sites were separated by as much as 8 mm, the slow focal oscillation remained highly correlated (r > or = 0.7). In contrast, the correlation between fast oscillations was usually lower (r approximately 0.3). Perievent histograms of neuronal discharges revealed that the firing probability of most LA and perirhinal neurons increased during the depth-negative component of the slow oscillation. In addition, respectively, 47 and 64% of LA and perirhinal neurons exhibited a significant modulation of firing probability in relation to the fast oscillations. Finally, crosscorrelating unit discharges simultaneously recorded in the LA and perirhinal cortex confirmed the presence of phase-related oscillatory events in both structures. In summary, our results suggest that the interconnections existing between the perirhinal cortex and LA can support the genesis of coherent neuronal activities at various frequencies. These results imply that cooperative interactions must be taking place between these structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbachol induces fast oscillations in the medial but not in the lateral entorhinal cortex of the isolated guinea pig brain.

Fast oscillations at 25-80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study ex...

متن کامل

Fear and Safety Engage Competing Patterns of Theta-Gamma Coupling in the Basolateral Amygdala

Theta oscillations synchronize the basolateral amygdala (BLA) with the hippocampus (HPC) and medial prefrontal cortex (mPFC) during fear expression. The role of gamma-frequency oscillations in the BLA is less well characterized. We examined gamma- and theta-frequency activity in recordings of neural activity from the BLA-HPC-mPFC circuit during fear conditioning, extinction, and exposure to an ...

متن کامل

Presynaptic NR2A-Containing NMDARs Are Required for LTD between the Amygdala and the Perirhinal Cortex: A Potential Mechanism for the Emotional Modulation of Memory?1,2,3

Visual recognition memory relies on long-term depression-like mechanisms within the perirhinal cortex and the activation of the lateral amygdala can enhance visual recognition memory. How the lateral amygdala regulates recognition memory is not known, but synaptic plasticity at amygdala-perirhinal synapses may provide a mechanism for the emotional enhancement of recognition memory. In this stud...

متن کامل

Gamma oscillations coordinate amygdalo-rhinal interactions during learning.

The rhinal cortices contribute to memory formation by integrating and transferring neocortical information to the hippocampus. Rhinal contributions to memory are likely influenced by the amygdala because strong reciprocal connections exist between these structures. In light of previous data showing that oscillations regulate neuronal activity during memory formation and recall, we tested the po...

متن کامل

Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit.

A number of sensory modalities most likely converge in the rat perirhinal cortex. The perirhinal cortex also interconnects with the amygdala, which plays an important role in various motivational and emotional behaviors. The neural pathway from the perirhinal cortex to the entorhinal cortex is considered one of the main paths into the entorhinal-hippocampal network, which has a crucial role in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 4  شماره 

صفحات  -

تاریخ انتشار 2001