A Semi-Supervised Ensemble Learning Method for Finding Discriminative Motifs and its Application
نویسندگان
چکیده
Finding discriminative motifs has recently received much attention in biomedicine as such motifs allow us to characterize in distinguishing two different classes of sequences. It is common in biomedical applications that the quantity of labeled sequences is very limited while a large number of unlabeled sequences is usually available. The current methods of discriminative motif finding are powerful and effective with large labeled datasets, but they do not function well on small labeled datasets. In this paper, we present a semi-supervised ensemble method for finding discriminative motifs which is based on the SLUPC algorithm, a separate-and-conquer searching method to discover motifs of type ‘discriminative one occurrence per sequence’. The proposed method, named E-SLUPC (Ensemble SLUPC), uses SLUPC to search discriminative motifs from an extended labeled dataset that contains labeled data and unlabeled data with predicted labels. Strong discriminative and frequent motifs characterizing two outcome classes of hepatitis C virus treatment (sustained viral response and non-sustained viral response) were detected and analyzed. Furthermore, the experimental evaluation shows that our method can function considerably well in the common context of medical research when the labeled data is usually difficult to obtain.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملA Study of Semi-supervised Generative Ensembles
Machine Learning can be divided into two schools of thought: generative model learning and discriminative model learning. While the MCS community has been focused mainly on the latter, our paper is concerned with questions that arise from ensembles of generative models. Generative models provide us with neat ways of thinking about two interesting learning issues: model selection and semi-superv...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 19 شماره
صفحات -
تاریخ انتشار 2013