Immature and transitional B cells are latency reservoirs for a gammaherpesvirus.
نویسندگان
چکیده
Gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68; also known as gammaherpesvirus 68 [γHV68] or murine herpesvirus 4 [MuHV-4]), establish lifelong latency in the resting memory B cell compartment. However, little is known about how this reservoir of infected mature B cells is maintained for the life of the host. In the context of a normal immune system, the mature B cell pool is naturally maintained by the renewable populations of developing B cells that arise from hematopoiesis. Thus, recurrent infection of these developing B cell populations could allow the virus continual access to the B cell lineage and, subsequent to differentiation, the memory B cell compartment. To begin to address this hypothesis, we examined whether MHV68 establishes latency in developing B cells during a normal course of infection. In work described here, we demonstrate the presence of viral genome in bone marrow pro-pre-B cells and immature B cells during early latency and immature B cells during long-term latency. Further, we show that transitional B cells in the spleen are latently infected and express the latency-associated nuclear antigen (LANA) throughout chronic infection. Because developing B cells normally exhibit a short life span and a high rate of turnover, these findings suggest a model in which gammaherpesviruses may gain access to the mature B cell compartment by recurrent seeding of developing B cells.
منابع مشابه
A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo
Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cel...
متن کاملMaintenance of gammaherpesvirus latency requires viral cyclin in the absence of B lymphocytes.
Gammaherpesviruses establish a life-long chronic infection that is tightly controlled by the host immune response. We previously demonstrated that viruses lacking the gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin) exhibited a severe defect in reactivation from latency and persistent replication. In this analysis of chronic infection, we demonstrate that the v-cyclin is required for gam...
متن کاملLong-term latent murine Gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo.
Murine gammaherpesvirus 68 (gammaHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peri...
متن کاملActivation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes.
Gammaherpesviruses subvert eukaryotic signaling pathways to favor latent infections in their cellular reservoirs. To this end, they express proteins that regulate or replace functionally specific signaling proteins of eukaryotic cells. Here we describe a new type of such viral-host interaction that is established through M2, a protein encoded by murine gammaherpesvirus 68. M2 associates with Va...
متن کاملDe novo infection of B cells during murine gammaherpesvirus 68 latency.
The mechanisms by which gammaherpesviruses maintain latency are unclear. Here we used a murine gammaherpesvirus model to show that previously uninfected B cells in immunocompetent mice can acquire virus during latency. In vivo depletion of T cells allowed viral reactivation, as measured by increased viral loads, but not enhanced transfer of virus to new cells. In the absence of both immune T ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 84 24 شماره
صفحات -
تاریخ انتشار 2010