Detecting topological currents in graphene superlattices.
نویسندگان
چکیده
Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene's two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.
منابع مشابه
Topological Bloch bands in graphene superlattices.
We outline a designer approach to endow widely available plain materials with topological properties by stacking them atop other nontopological materials. The approach is illustrated with a model system comprising graphene stacked atop hexagonal boron nitride. In this case, the Berry curvature of the electron Bloch bands is highly sensitive to the stacking configuration. As a result, electron t...
متن کاملTopological features and gauge fields in graphene superlattices. Detecting Topological Currents in Graphene Superlattices
The quest for crystals whose electronic bands show non trivial topological features has not ceased since the discovery of the Quantum Hall Effect. The amazing current quantization in QHE devices can be traced back to edge states which emerge from non trivial electronic structures[1, 2]. Topological properties are typically associated to integer numbers, so that they are quite robust against per...
متن کاملBloch–Zener Oscillations in Graphene and Topological Insulators
We show that superlattices based on zero-gap semiconductors such as graphene and mercury telluride exhibit characteristic Bloch–Zener oscillations that emerge from the coherent superposition of Bloch oscillations and multiple Zener tunneling between the electron and hole branch. We demonstrate this mechanism by means of wave packet dynamics in various spatially periodically modulated nanoribbon...
متن کاملEnergy gap of Kronig-Penney-type hydrogenated graphene superlattices
The electronic structure of graphene-graphane superlattices with armchair interfaces is investigated with first-principles density-functional theory. By separately varying the widths, we find that the energy gap Eg is inversely proportional to the width of the graphene strip and that the gap increases as the hydrogenated strip becomes wider due to the enhanced confinement effect. It is further ...
متن کاملar X iv : 1 10 4 . 00 51 v 1 [ co nd - m at . m es - h al l ] 3 1 M ar 2 01 1 Band structures of bilayer graphene superlattices
We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG). We use this to show that a one dimensional (1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads to zero energy anisotropic massless Dirac fermions and finite energy Dirac points. The electric field superlattice is shown to map onto a coupled cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 346 6208 شماره
صفحات -
تاریخ انتشار 2014